Fabrice-TIERCELIN
commited on
Upload 5 files
Browse files- hyvideo/utils/data_utils.py +15 -15
- hyvideo/utils/file_utils.py +70 -70
- hyvideo/utils/helpers.py +40 -40
- hyvideo/utils/preprocess_text_encoder_tokenizer_utils.py +46 -46
hyvideo/utils/data_utils.py
CHANGED
@@ -1,15 +1,15 @@
|
|
1 |
-
import numpy as np
|
2 |
-
import math
|
3 |
-
|
4 |
-
|
5 |
-
def align_to(value, alignment):
|
6 |
-
"""align hight, width according to alignment
|
7 |
-
|
8 |
-
Args:
|
9 |
-
value (int): height or width
|
10 |
-
alignment (int): target alignment factor
|
11 |
-
|
12 |
-
Returns:
|
13 |
-
int: the aligned value
|
14 |
-
"""
|
15 |
-
return int(math.ceil(value / alignment) * alignment)
|
|
|
1 |
+
import numpy as np
|
2 |
+
import math
|
3 |
+
|
4 |
+
|
5 |
+
def align_to(value, alignment):
|
6 |
+
"""align hight, width according to alignment
|
7 |
+
|
8 |
+
Args:
|
9 |
+
value (int): height or width
|
10 |
+
alignment (int): target alignment factor
|
11 |
+
|
12 |
+
Returns:
|
13 |
+
int: the aligned value
|
14 |
+
"""
|
15 |
+
return int(math.ceil(value / alignment) * alignment)
|
hyvideo/utils/file_utils.py
CHANGED
@@ -1,70 +1,70 @@
|
|
1 |
-
import os
|
2 |
-
from pathlib import Path
|
3 |
-
from einops import rearrange
|
4 |
-
|
5 |
-
import torch
|
6 |
-
import torchvision
|
7 |
-
import numpy as np
|
8 |
-
import imageio
|
9 |
-
|
10 |
-
CODE_SUFFIXES = {
|
11 |
-
".py", # Python codes
|
12 |
-
".sh", # Shell scripts
|
13 |
-
".yaml",
|
14 |
-
".yml", # Configuration files
|
15 |
-
}
|
16 |
-
|
17 |
-
|
18 |
-
def safe_dir(path):
|
19 |
-
"""
|
20 |
-
Create a directory (or the parent directory of a file) if it does not exist.
|
21 |
-
|
22 |
-
Args:
|
23 |
-
path (str or Path): Path to the directory.
|
24 |
-
|
25 |
-
Returns:
|
26 |
-
path (Path): Path object of the directory.
|
27 |
-
"""
|
28 |
-
path = Path(path)
|
29 |
-
path.mkdir(exist_ok=True, parents=True)
|
30 |
-
return path
|
31 |
-
|
32 |
-
|
33 |
-
def safe_file(path):
|
34 |
-
"""
|
35 |
-
Create the parent directory of a file if it does not exist.
|
36 |
-
|
37 |
-
Args:
|
38 |
-
path (str or Path): Path to the file.
|
39 |
-
|
40 |
-
Returns:
|
41 |
-
path (Path): Path object of the file.
|
42 |
-
"""
|
43 |
-
path = Path(path)
|
44 |
-
path.parent.mkdir(exist_ok=True, parents=True)
|
45 |
-
return path
|
46 |
-
|
47 |
-
def save_videos_grid(videos: torch.Tensor, path: str, rescale=False, n_rows=1, fps=24):
|
48 |
-
"""save videos by video tensor
|
49 |
-
copy from https://github.com/guoyww/AnimateDiff/blob/e92bd5671ba62c0d774a32951453e328018b7c5b/animatediff/utils/util.py#L61
|
50 |
-
|
51 |
-
Args:
|
52 |
-
videos (torch.Tensor): video tensor predicted by the model
|
53 |
-
path (str): path to save video
|
54 |
-
rescale (bool, optional): rescale the video tensor from [-1, 1] to . Defaults to False.
|
55 |
-
n_rows (int, optional): Defaults to 1.
|
56 |
-
fps (int, optional): video save fps. Defaults to 8.
|
57 |
-
"""
|
58 |
-
videos = rearrange(videos, "b c t h w -> t b c h w")
|
59 |
-
outputs = []
|
60 |
-
for x in videos:
|
61 |
-
x = torchvision.utils.make_grid(x, nrow=n_rows)
|
62 |
-
x = x.transpose(0, 1).transpose(1, 2).squeeze(-1)
|
63 |
-
if rescale:
|
64 |
-
x = (x + 1.0) / 2.0 # -1,1 -> 0,1
|
65 |
-
x = torch.clamp(x, 0, 1)
|
66 |
-
x = (x * 255).numpy().astype(np.uint8)
|
67 |
-
outputs.append(x)
|
68 |
-
|
69 |
-
os.makedirs(os.path.dirname(path), exist_ok=True)
|
70 |
-
imageio.mimsave(path, outputs, fps=fps)
|
|
|
1 |
+
import os
|
2 |
+
from pathlib import Path
|
3 |
+
from einops import rearrange
|
4 |
+
|
5 |
+
import torch
|
6 |
+
import torchvision
|
7 |
+
import numpy as np
|
8 |
+
import imageio
|
9 |
+
|
10 |
+
CODE_SUFFIXES = {
|
11 |
+
".py", # Python codes
|
12 |
+
".sh", # Shell scripts
|
13 |
+
".yaml",
|
14 |
+
".yml", # Configuration files
|
15 |
+
}
|
16 |
+
|
17 |
+
|
18 |
+
def safe_dir(path):
|
19 |
+
"""
|
20 |
+
Create a directory (or the parent directory of a file) if it does not exist.
|
21 |
+
|
22 |
+
Args:
|
23 |
+
path (str or Path): Path to the directory.
|
24 |
+
|
25 |
+
Returns:
|
26 |
+
path (Path): Path object of the directory.
|
27 |
+
"""
|
28 |
+
path = Path(path)
|
29 |
+
path.mkdir(exist_ok=True, parents=True)
|
30 |
+
return path
|
31 |
+
|
32 |
+
|
33 |
+
def safe_file(path):
|
34 |
+
"""
|
35 |
+
Create the parent directory of a file if it does not exist.
|
36 |
+
|
37 |
+
Args:
|
38 |
+
path (str or Path): Path to the file.
|
39 |
+
|
40 |
+
Returns:
|
41 |
+
path (Path): Path object of the file.
|
42 |
+
"""
|
43 |
+
path = Path(path)
|
44 |
+
path.parent.mkdir(exist_ok=True, parents=True)
|
45 |
+
return path
|
46 |
+
|
47 |
+
def save_videos_grid(videos: torch.Tensor, path: str, rescale=False, n_rows=1, fps=24):
|
48 |
+
"""save videos by video tensor
|
49 |
+
copy from https://github.com/guoyww/AnimateDiff/blob/e92bd5671ba62c0d774a32951453e328018b7c5b/animatediff/utils/util.py#L61
|
50 |
+
|
51 |
+
Args:
|
52 |
+
videos (torch.Tensor): video tensor predicted by the model
|
53 |
+
path (str): path to save video
|
54 |
+
rescale (bool, optional): rescale the video tensor from [-1, 1] to . Defaults to False.
|
55 |
+
n_rows (int, optional): Defaults to 1.
|
56 |
+
fps (int, optional): video save fps. Defaults to 8.
|
57 |
+
"""
|
58 |
+
videos = rearrange(videos, "b c t h w -> t b c h w")
|
59 |
+
outputs = []
|
60 |
+
for x in videos:
|
61 |
+
x = torchvision.utils.make_grid(x, nrow=n_rows)
|
62 |
+
x = x.transpose(0, 1).transpose(1, 2).squeeze(-1)
|
63 |
+
if rescale:
|
64 |
+
x = (x + 1.0) / 2.0 # -1,1 -> 0,1
|
65 |
+
x = torch.clamp(x, 0, 1)
|
66 |
+
x = (x * 255).numpy().astype(np.uint8)
|
67 |
+
outputs.append(x)
|
68 |
+
|
69 |
+
os.makedirs(os.path.dirname(path), exist_ok=True)
|
70 |
+
imageio.mimsave(path, outputs, fps=fps)
|
hyvideo/utils/helpers.py
CHANGED
@@ -1,40 +1,40 @@
|
|
1 |
-
import collections.abc
|
2 |
-
|
3 |
-
from itertools import repeat
|
4 |
-
|
5 |
-
|
6 |
-
def _ntuple(n):
|
7 |
-
def parse(x):
|
8 |
-
if isinstance(x, collections.abc.Iterable) and not isinstance(x, str):
|
9 |
-
x = tuple(x)
|
10 |
-
if len(x) == 1:
|
11 |
-
x = tuple(repeat(x[0], n))
|
12 |
-
return x
|
13 |
-
return tuple(repeat(x, n))
|
14 |
-
return parse
|
15 |
-
|
16 |
-
|
17 |
-
to_1tuple = _ntuple(1)
|
18 |
-
to_2tuple = _ntuple(2)
|
19 |
-
to_3tuple = _ntuple(3)
|
20 |
-
to_4tuple = _ntuple(4)
|
21 |
-
|
22 |
-
|
23 |
-
def as_tuple(x):
|
24 |
-
if isinstance(x, collections.abc.Iterable) and not isinstance(x, str):
|
25 |
-
return tuple(x)
|
26 |
-
if x is None or isinstance(x, (int, float, str)):
|
27 |
-
return (x,)
|
28 |
-
else:
|
29 |
-
raise ValueError(f"Unknown type {type(x)}")
|
30 |
-
|
31 |
-
|
32 |
-
def as_list_of_2tuple(x):
|
33 |
-
x = as_tuple(x)
|
34 |
-
if len(x) == 1:
|
35 |
-
x = (x[0], x[0])
|
36 |
-
assert len(x) % 2 == 0, f"Expect even length, got {len(x)}."
|
37 |
-
lst = []
|
38 |
-
for i in range(0, len(x), 2):
|
39 |
-
lst.append((x[i], x[i + 1]))
|
40 |
-
return lst
|
|
|
1 |
+
import collections.abc
|
2 |
+
|
3 |
+
from itertools import repeat
|
4 |
+
|
5 |
+
|
6 |
+
def _ntuple(n):
|
7 |
+
def parse(x):
|
8 |
+
if isinstance(x, collections.abc.Iterable) and not isinstance(x, str):
|
9 |
+
x = tuple(x)
|
10 |
+
if len(x) == 1:
|
11 |
+
x = tuple(repeat(x[0], n))
|
12 |
+
return x
|
13 |
+
return tuple(repeat(x, n))
|
14 |
+
return parse
|
15 |
+
|
16 |
+
|
17 |
+
to_1tuple = _ntuple(1)
|
18 |
+
to_2tuple = _ntuple(2)
|
19 |
+
to_3tuple = _ntuple(3)
|
20 |
+
to_4tuple = _ntuple(4)
|
21 |
+
|
22 |
+
|
23 |
+
def as_tuple(x):
|
24 |
+
if isinstance(x, collections.abc.Iterable) and not isinstance(x, str):
|
25 |
+
return tuple(x)
|
26 |
+
if x is None or isinstance(x, (int, float, str)):
|
27 |
+
return (x,)
|
28 |
+
else:
|
29 |
+
raise ValueError(f"Unknown type {type(x)}")
|
30 |
+
|
31 |
+
|
32 |
+
def as_list_of_2tuple(x):
|
33 |
+
x = as_tuple(x)
|
34 |
+
if len(x) == 1:
|
35 |
+
x = (x[0], x[0])
|
36 |
+
assert len(x) % 2 == 0, f"Expect even length, got {len(x)}."
|
37 |
+
lst = []
|
38 |
+
for i in range(0, len(x), 2):
|
39 |
+
lst.append((x[i], x[i + 1]))
|
40 |
+
return lst
|
hyvideo/utils/preprocess_text_encoder_tokenizer_utils.py
CHANGED
@@ -1,46 +1,46 @@
|
|
1 |
-
import argparse
|
2 |
-
import torch
|
3 |
-
from transformers import (
|
4 |
-
AutoProcessor,
|
5 |
-
LlavaForConditionalGeneration,
|
6 |
-
)
|
7 |
-
|
8 |
-
|
9 |
-
def preprocess_text_encoder_tokenizer(args):
|
10 |
-
|
11 |
-
processor = AutoProcessor.from_pretrained(args.input_dir)
|
12 |
-
model = LlavaForConditionalGeneration.from_pretrained(
|
13 |
-
args.input_dir,
|
14 |
-
torch_dtype=torch.float16,
|
15 |
-
low_cpu_mem_usage=True,
|
16 |
-
).to(0)
|
17 |
-
|
18 |
-
model.language_model.save_pretrained(
|
19 |
-
f"{args.output_dir}"
|
20 |
-
)
|
21 |
-
processor.tokenizer.save_pretrained(
|
22 |
-
f"{args.output_dir}"
|
23 |
-
)
|
24 |
-
|
25 |
-
if __name__ == "__main__":
|
26 |
-
|
27 |
-
parser = argparse.ArgumentParser()
|
28 |
-
parser.add_argument(
|
29 |
-
"--input_dir",
|
30 |
-
type=str,
|
31 |
-
required=True,
|
32 |
-
help="The path to the llava-llama-3-8b-v1_1-transformers.",
|
33 |
-
)
|
34 |
-
parser.add_argument(
|
35 |
-
"--output_dir",
|
36 |
-
type=str,
|
37 |
-
default="",
|
38 |
-
help="The output path of the llava-llama-3-8b-text-encoder-tokenizer."
|
39 |
-
"if '', the parent dir of output will be the same as input dir.",
|
40 |
-
)
|
41 |
-
args = parser.parse_args()
|
42 |
-
|
43 |
-
if len(args.output_dir) == 0:
|
44 |
-
args.output_dir = "/".join(args.input_dir.split("/")[:-1])
|
45 |
-
|
46 |
-
preprocess_text_encoder_tokenizer(args)
|
|
|
1 |
+
import argparse
|
2 |
+
import torch
|
3 |
+
from transformers import (
|
4 |
+
AutoProcessor,
|
5 |
+
LlavaForConditionalGeneration,
|
6 |
+
)
|
7 |
+
|
8 |
+
|
9 |
+
def preprocess_text_encoder_tokenizer(args):
|
10 |
+
|
11 |
+
processor = AutoProcessor.from_pretrained(args.input_dir)
|
12 |
+
model = LlavaForConditionalGeneration.from_pretrained(
|
13 |
+
args.input_dir,
|
14 |
+
torch_dtype=torch.float16,
|
15 |
+
low_cpu_mem_usage=True,
|
16 |
+
).to(0)
|
17 |
+
|
18 |
+
model.language_model.save_pretrained(
|
19 |
+
f"{args.output_dir}"
|
20 |
+
)
|
21 |
+
processor.tokenizer.save_pretrained(
|
22 |
+
f"{args.output_dir}"
|
23 |
+
)
|
24 |
+
|
25 |
+
if __name__ == "__main__":
|
26 |
+
|
27 |
+
parser = argparse.ArgumentParser()
|
28 |
+
parser.add_argument(
|
29 |
+
"--input_dir",
|
30 |
+
type=str,
|
31 |
+
required=True,
|
32 |
+
help="The path to the llava-llama-3-8b-v1_1-transformers.",
|
33 |
+
)
|
34 |
+
parser.add_argument(
|
35 |
+
"--output_dir",
|
36 |
+
type=str,
|
37 |
+
default="",
|
38 |
+
help="The output path of the llava-llama-3-8b-text-encoder-tokenizer."
|
39 |
+
"if '', the parent dir of output will be the same as input dir.",
|
40 |
+
)
|
41 |
+
args = parser.parse_args()
|
42 |
+
|
43 |
+
if len(args.output_dir) == 0:
|
44 |
+
args.output_dir = "/".join(args.input_dir.split("/")[:-1])
|
45 |
+
|
46 |
+
preprocess_text_encoder_tokenizer(args)
|