HunyuanVideo / utils /collect_env.py
Fabrice-TIERCELIN's picture
' instead of "
d2722cf verified
# Copyright (c) OpenMMLab. All rights reserved.
"""This file holding some environment constant for sharing by other files."""
import os
import os.path as osp
import subprocess
import sys
from collections import OrderedDict, defaultdict
import numpy as np
import torch
def is_rocm_pytorch() -> bool:
"""Check whether the PyTorch is compiled on ROCm."""
is_rocm = False
if TORCH_VERSION != "parrots":
try:
from torch.utils.cpp_extension import ROCM_HOME
is_rocm = True if ((torch.version.hip is not None) and
(ROCM_HOME is not None)) else False
except ImportError:
pass
return is_rocm
TORCH_VERSION = torch.__version__
def get_build_config():
"""Obtain the build information of PyTorch or Parrots."""
if TORCH_VERSION == "parrots":
from parrots.config import get_build_info
return get_build_info()
else:
return torch.__config__.show()
try:
import torch_musa # noqa: F401
IS_MUSA_AVAILABLE = True
except Exception:
IS_MUSA_AVAILABLE = False
def is_musa_available() -> bool:
return IS_MUSA_AVAILABLE
def is_cuda_available() -> bool:
"""Returns True if cuda devices exist."""
return torch.cuda.is_available()
def _get_cuda_home():
if TORCH_VERSION == "parrots":
from parrots.utils.build_extension import CUDA_HOME
else:
if is_rocm_pytorch():
from torch.utils.cpp_extension import ROCM_HOME
CUDA_HOME = ROCM_HOME
else:
from torch.utils.cpp_extension import CUDA_HOME
return CUDA_HOME
def _get_musa_home():
return os.environ.get("MUSA_HOME")
def collect_env():
"""Collect the information of the running environments.
Returns:
dict: The environment information. The following fields are contained.
- sys.platform: The variable of ``sys.platform``.
- Python: Python version.
- CUDA available: Bool, indicating if CUDA is available.
- GPU devices: Device type of each GPU.
- CUDA_HOME (optional): The env var ``CUDA_HOME``.
- NVCC (optional): NVCC version.
- GCC: GCC version, "n/a" if GCC is not installed.
- MSVC: Microsoft Virtual C++ Compiler version, Windows only.
- PyTorch: PyTorch version.
- PyTorch compiling details: The output of \
``torch.__config__.show()``.
- TorchVision (optional): TorchVision version.
- OpenCV (optional): OpenCV version.
"""
from distutils import errors
env_info = OrderedDict()
env_info["sys.platform"] = sys.platform
env_info["Python"] = sys.version.replace("\n", "")
cuda_available = is_cuda_available()
musa_available = is_musa_available()
env_info["CUDA available"] = cuda_available
env_info["MUSA available"] = musa_available
env_info["numpy_random_seed"] = np.random.get_state()[1][0]
if cuda_available:
devices = defaultdict(list)
for k in range(torch.cuda.device_count()):
devices[torch.cuda.get_device_name(k)].append(str(k))
for name, device_ids in devices.items():
env_info["GPU " + ",".join(device_ids)] = name
CUDA_HOME = _get_cuda_home()
env_info["CUDA_HOME"] = CUDA_HOME
if CUDA_HOME is not None and osp.isdir(CUDA_HOME):
if CUDA_HOME == "/opt/rocm":
try:
nvcc = osp.join(CUDA_HOME, "hip/bin/hipcc")
nvcc = subprocess.check_output(
f"\"{nvcc}\" --version", shell=True)
nvcc = nvcc.decode("utf-8").strip()
release = nvcc.rfind("HIP version:")
build = nvcc.rfind("")
nvcc = nvcc[release:build].strip()
except subprocess.SubprocessError:
nvcc = "Not Available"
else:
try:
nvcc = osp.join(CUDA_HOME, "bin/nvcc")
nvcc = subprocess.check_output(f"\"{nvcc}\" -V", shell=True)
nvcc = nvcc.decode("utf-8").strip()
release = nvcc.rfind("Cuda compilation tools")
build = nvcc.rfind("Build ")
nvcc = nvcc[release:build].strip()
except subprocess.SubprocessError:
nvcc = "Not Available"
env_info["NVCC"] = nvcc
elif musa_available:
devices = defaultdict(list)
for k in range(torch.musa.device_count()):
devices[torch.musa.get_device_name(k)].append(str(k))
for name, device_ids in devices.items():
env_info["GPU " + ",".join(device_ids)] = name
MUSA_HOME = _get_musa_home()
env_info["MUSA_HOME"] = MUSA_HOME
if MUSA_HOME is not None and osp.isdir(MUSA_HOME):
try:
mcc = osp.join(MUSA_HOME, "bin/mcc")
subprocess.check_output(f"\"{mcc}\" -v", shell=True)
except subprocess.SubprocessError:
mcc = "Not Available"
env_info["mcc"] = mcc
try:
# Check C++ Compiler.
# For Unix-like, sysconfig has 'CC' variable like 'gcc -pthread ...',
# indicating the compiler used, we use this to get the compiler name
import io
import sysconfig
cc = sysconfig.get_config_var("CC")
if cc:
cc = osp.basename(cc.split()[0])
cc_info = subprocess.check_output(f"{cc} --version", shell=True)
env_info["GCC"] = cc_info.decode("utf-8").partition(
"\n")[0].strip()
else:
# on Windows, cl.exe is not in PATH. We need to find the path.
# distutils.ccompiler.new_compiler() returns a msvccompiler
# object and after initialization, path to cl.exe is found.
import locale
import os
from distutils.ccompiler import new_compiler
ccompiler = new_compiler()
ccompiler.initialize()
cc = subprocess.check_output(
f"{ccompiler.cc}", stderr=subprocess.STDOUT, shell=True)
encoding = os.device_encoding(
sys.stdout.fileno()) or locale.getpreferredencoding()
env_info["MSVC"] = cc.decode(encoding).partition("\n")[0].strip()
env_info["GCC"] = "n/a"
except (subprocess.CalledProcessError, errors.DistutilsPlatformError):
env_info["GCC"] = "n/a"
except io.UnsupportedOperation as e:
# JupyterLab on Windows changes sys.stdout, which has no `fileno` attr
# Refer to: https://github.com/open-mmlab/mmengine/issues/931
# TODO: find a solution to get compiler info in Windows JupyterLab,
# while preserving backward-compatibility in other systems.
env_info["MSVC"] = f"n/a, reason: {str(e)}"
env_info["PyTorch"] = torch.__version__
env_info["PyTorch compiling details"] = get_build_config()
try:
import torchvision
env_info["TorchVision"] = torchvision.__version__
except ModuleNotFoundError:
pass
try:
import cv2
env_info["OpenCV"] = cv2.__version__
except ImportError:
pass
return env_info
if __name__ == "__main__":
for name, val in collect_env().items():
print(f"{name}: {val}")