|
import math
|
|
import torch
|
|
import torch.nn as nn
|
|
from einops import rearrange, repeat
|
|
|
|
from ..utils.helpers import to_2tuple
|
|
|
|
|
|
class PatchEmbed(nn.Module):
|
|
"""2D Image to Patch Embedding
|
|
|
|
Image to Patch Embedding using Conv2d
|
|
|
|
A convolution based approach to patchifying a 2D image w/ embedding projection.
|
|
|
|
Based on the impl in https://github.com/google-research/vision_transformer
|
|
|
|
Hacked together by / Copyright 2020 Ross Wightman
|
|
|
|
Remove the _assert function in forward function to be compatible with multi-resolution images.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
patch_size=16,
|
|
in_chans=3,
|
|
embed_dim=768,
|
|
norm_layer=None,
|
|
flatten=True,
|
|
bias=True,
|
|
dtype=None,
|
|
device=None,
|
|
):
|
|
factory_kwargs = {"dtype": dtype, "device": device}
|
|
super().__init__()
|
|
patch_size = to_2tuple(patch_size)
|
|
self.patch_size = patch_size
|
|
self.flatten = flatten
|
|
|
|
self.proj = nn.Conv3d(
|
|
in_chans,
|
|
embed_dim,
|
|
kernel_size=patch_size,
|
|
stride=patch_size,
|
|
bias=bias,
|
|
**factory_kwargs
|
|
)
|
|
nn.init.xavier_uniform_(self.proj.weight.view(self.proj.weight.size(0), -1))
|
|
if bias:
|
|
nn.init.zeros_(self.proj.bias)
|
|
|
|
self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()
|
|
|
|
def forward(self, x):
|
|
x = self.proj(x)
|
|
if self.flatten:
|
|
x = x.flatten(2).transpose(1, 2)
|
|
x = self.norm(x)
|
|
return x
|
|
|
|
|
|
class TextProjection(nn.Module):
|
|
"""
|
|
Projects text embeddings. Also handles dropout for classifier-free guidance.
|
|
|
|
Adapted from https://github.com/PixArt-alpha/PixArt-alpha/blob/master/diffusion/model/nets/PixArt_blocks.py
|
|
"""
|
|
|
|
def __init__(self, in_channels, hidden_size, act_layer, dtype=None, device=None):
|
|
factory_kwargs = {"dtype": dtype, "device": device}
|
|
super().__init__()
|
|
self.linear_1 = nn.Linear(
|
|
in_features=in_channels,
|
|
out_features=hidden_size,
|
|
bias=True,
|
|
**factory_kwargs
|
|
)
|
|
self.act_1 = act_layer()
|
|
self.linear_2 = nn.Linear(
|
|
in_features=hidden_size,
|
|
out_features=hidden_size,
|
|
bias=True,
|
|
**factory_kwargs
|
|
)
|
|
|
|
def forward(self, caption):
|
|
hidden_states = self.linear_1(caption)
|
|
hidden_states = self.act_1(hidden_states)
|
|
hidden_states = self.linear_2(hidden_states)
|
|
return hidden_states
|
|
|
|
|
|
def timestep_embedding(t, dim, max_period=10000):
|
|
"""
|
|
Create sinusoidal timestep embeddings.
|
|
|
|
Args:
|
|
t (torch.Tensor): a 1-D Tensor of N indices, one per batch element. These may be fractional.
|
|
dim (int): the dimension of the output.
|
|
max_period (int): controls the minimum frequency of the embeddings.
|
|
|
|
Returns:
|
|
embedding (torch.Tensor): An (N, D) Tensor of positional embeddings.
|
|
|
|
.. ref_link: https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py
|
|
"""
|
|
half = dim // 2
|
|
freqs = torch.exp(
|
|
-math.log(max_period)
|
|
* torch.arange(start=0, end=half, dtype=torch.float32)
|
|
/ half
|
|
).to(device=t.device)
|
|
args = t[:, None].float() * freqs[None]
|
|
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
|
if dim % 2:
|
|
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
|
|
return embedding
|
|
|
|
|
|
class TimestepEmbedder(nn.Module):
|
|
"""
|
|
Embeds scalar timesteps into vector representations.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
hidden_size,
|
|
act_layer,
|
|
frequency_embedding_size=256,
|
|
max_period=10000,
|
|
out_size=None,
|
|
dtype=None,
|
|
device=None,
|
|
):
|
|
factory_kwargs = {"dtype": dtype, "device": device}
|
|
super().__init__()
|
|
self.frequency_embedding_size = frequency_embedding_size
|
|
self.max_period = max_period
|
|
if out_size is None:
|
|
out_size = hidden_size
|
|
|
|
self.mlp = nn.Sequential(
|
|
nn.Linear(
|
|
frequency_embedding_size, hidden_size, bias=True, **factory_kwargs
|
|
),
|
|
act_layer(),
|
|
nn.Linear(hidden_size, out_size, bias=True, **factory_kwargs),
|
|
)
|
|
nn.init.normal_(self.mlp[0].weight, std=0.02)
|
|
nn.init.normal_(self.mlp[2].weight, std=0.02)
|
|
|
|
def forward(self, t):
|
|
t_freq = timestep_embedding(
|
|
t, self.frequency_embedding_size, self.max_period
|
|
).type(self.mlp[0].weight.dtype)
|
|
t_emb = self.mlp(t_freq)
|
|
return t_emb
|
|
|