|
import torch |
|
import sys |
|
import os |
|
current_dir = os.path.dirname(os.path.abspath(__file__)) |
|
project_root = os.path.dirname(current_dir) |
|
sys.path.append(project_root) |
|
|
|
from hyvideo.modules.attenion import attention |
|
from xfuser.core.long_ctx_attention import xFuserLongContextAttention |
|
from xfuser.core.distributed import ( |
|
init_distributed_environment, |
|
initialize_model_parallel, |
|
|
|
) |
|
|
|
def init_dist(backend="nccl"): |
|
local_rank = int(os.environ["LOCAL_RANK"]) |
|
rank = int(os.environ["RANK"]) |
|
world_size = int(os.environ["WORLD_SIZE"]) |
|
|
|
print( |
|
f"Initializing distributed environment with rank {rank}, world size {world_size}, local rank {local_rank}" |
|
) |
|
|
|
torch.cuda.set_device(local_rank) |
|
init_distributed_environment(rank=rank, world_size=world_size) |
|
|
|
|
|
|
|
if world_size > 1: |
|
ring_degree = world_size // 2 |
|
ulysses_degree = 2 |
|
else: |
|
ring_degree = 1 |
|
ulysses_degree = 1 |
|
initialize_model_parallel( |
|
sequence_parallel_degree=world_size, |
|
ring_degree=ring_degree, |
|
ulysses_degree=ulysses_degree, |
|
) |
|
|
|
return rank, world_size |
|
|
|
def test_mm_double_stream_block_attention(rank, world_size): |
|
device = torch.device(f"cuda:{rank}") |
|
dtype = torch.bfloat16 |
|
batch_size = 1 |
|
seq_len_img = 118800 |
|
seq_len_txt = 256 |
|
heads_num = 24 |
|
head_dim = 128 |
|
|
|
img_q = torch.randn(batch_size, seq_len_img, heads_num, head_dim, device=device, dtype=dtype) |
|
img_k = torch.randn(batch_size, seq_len_img, heads_num, head_dim, device=device, dtype=dtype) |
|
img_v = torch.randn(batch_size, seq_len_img, heads_num, head_dim, device=device, dtype=dtype) |
|
txt_q = torch.randn(batch_size, seq_len_txt, heads_num, head_dim, device=device, dtype=dtype) |
|
txt_k = torch.randn(batch_size, seq_len_txt, heads_num, head_dim, device=device, dtype=dtype) |
|
txt_v = torch.randn(batch_size, seq_len_txt, heads_num, head_dim, device=device, dtype=dtype) |
|
|
|
with torch.no_grad(): |
|
torch.distributed.broadcast(img_q, src=0) |
|
torch.distributed.broadcast(img_k, src=0) |
|
torch.distributed.broadcast(img_v, src=0) |
|
torch.distributed.broadcast(txt_q, src=0) |
|
torch.distributed.broadcast(txt_k, src=0) |
|
torch.distributed.broadcast(txt_v, src=0) |
|
q = torch.cat((img_q, txt_q), dim=1) |
|
k = torch.cat((img_k, txt_k), dim=1) |
|
v = torch.cat((img_v, txt_v), dim=1) |
|
|
|
|
|
cu_seqlens_q = torch.tensor([0, 118811, 119056], device='cuda:0', dtype=torch.int32) |
|
cu_seqlens_kv = torch.tensor([0, 118811, 119056], device='cuda:0', dtype=torch.int32) |
|
max_seqlen_q = 119056 |
|
max_seqlen_kv = 119056 |
|
mode = "torch" |
|
|
|
original_output = attention( |
|
q, |
|
k, |
|
v, |
|
mode=mode, |
|
cu_seqlens_q=cu_seqlens_q, |
|
cu_seqlens_kv=cu_seqlens_kv, |
|
max_seqlen_q=max_seqlen_q, |
|
max_seqlen_kv=max_seqlen_kv, |
|
batch_size=batch_size |
|
) |
|
|
|
hybrid_seq_parallel_attn = xFuserLongContextAttention() |
|
hybrid_seq_parallel_output = hybrid_seq_parallel_attn( |
|
None, |
|
img_q, |
|
img_k, |
|
img_v, |
|
dropout_p=0.0, |
|
causal=False, |
|
joint_tensor_query=txt_q, |
|
joint_tensor_key=txt_k, |
|
joint_tensor_value=txt_v, |
|
joint_strategy="rear", |
|
) |
|
|
|
b, s, a, d = hybrid_seq_parallel_output.shape |
|
hybrid_seq_parallel_output = hybrid_seq_parallel_output.reshape(b, s, -1) |
|
|
|
assert original_output.shape == hybrid_seq_parallel_output.shape, f"Shape mismatch: {original_output.shape} vs {hybrid_seq_parallel_output.shape}" |
|
|
|
torch.testing.assert_close(original_output, hybrid_seq_parallel_output, rtol=1e-3, atol=1e-3) |
|
print("test_mm_double_stream_block_attention Passed") |
|
|
|
def test_mm_single_stream_block_attention(rank, world_size): |
|
device = torch.device(f"cuda:{rank}") |
|
dtype = torch.bfloat16 |
|
txt_len = 256 |
|
batch_size = 1 |
|
seq_len_img = 118800 |
|
seq_len_txt = 256 |
|
heads_num = 24 |
|
head_dim = 128 |
|
|
|
with torch.no_grad(): |
|
img_q = torch.randn(batch_size, seq_len_img, heads_num, head_dim, device=device, dtype=dtype) |
|
img_k = torch.randn(batch_size, seq_len_img, heads_num, head_dim, device=device, dtype=dtype) |
|
txt_q = torch.randn(batch_size, seq_len_txt, heads_num, head_dim, device=device, dtype=dtype) |
|
txt_k = torch.randn(batch_size, seq_len_txt, heads_num, head_dim, device=device, dtype=dtype) |
|
v = torch.randn(batch_size, seq_len_img + seq_len_txt, heads_num, head_dim, device=device, dtype=dtype) |
|
|
|
torch.distributed.broadcast(img_q, src=0) |
|
torch.distributed.broadcast(img_k, src=0) |
|
torch.distributed.broadcast(txt_q, src=0) |
|
torch.distributed.broadcast(txt_k, src=0) |
|
torch.distributed.broadcast(v, src=0) |
|
|
|
q = torch.cat((img_q, txt_q), dim=1) |
|
k = torch.cat((img_k, txt_k), dim=1) |
|
|
|
cu_seqlens_q = torch.tensor([0, 118811, 119056], device='cuda:0', dtype=torch.int32) |
|
cu_seqlens_kv = torch.tensor([0, 118811, 119056], device='cuda:0', dtype=torch.int32) |
|
max_seqlen_q = 119056 |
|
max_seqlen_kv = 119056 |
|
mode = "torch" |
|
|
|
original_output = attention( |
|
q, |
|
k, |
|
v, |
|
mode=mode, |
|
cu_seqlens_q=cu_seqlens_q, |
|
cu_seqlens_kv=cu_seqlens_kv, |
|
max_seqlen_q=max_seqlen_q, |
|
max_seqlen_kv=max_seqlen_kv, |
|
batch_size=batch_size |
|
) |
|
|
|
hybrid_seq_parallel_attn = xFuserLongContextAttention() |
|
hybrid_seq_parallel_output = hybrid_seq_parallel_attn( |
|
None, |
|
q[:, :-txt_len, :, :], |
|
k[:, :-txt_len, :, :], |
|
v[:, :-txt_len, :, :], |
|
dropout_p=0.0, |
|
causal=False, |
|
joint_tensor_query=q[:, -txt_len:, :, :], |
|
joint_tensor_key=k[:, -txt_len:, :, :], |
|
joint_tensor_value=v[:, -txt_len:, :, :], |
|
joint_strategy="rear", |
|
) |
|
b, s, a, d = hybrid_seq_parallel_output.shape |
|
hybrid_seq_parallel_output = hybrid_seq_parallel_output.reshape(b, s, -1) |
|
|
|
assert original_output.shape == hybrid_seq_parallel_output.shape, f"Shape mismatch: {original_output.shape} vs {hybrid_seq_parallel_output.shape}" |
|
|
|
torch.testing.assert_close(original_output, hybrid_seq_parallel_output, rtol=1e-3, atol=1e-3) |
|
print("test_mm_single_stream_block_attention Passed") |
|
|
|
if __name__ == "__main__": |
|
rank, world_size = init_dist() |
|
test_mm_double_stream_block_attention(rank, world_size) |
|
test_mm_single_stream_block_attention(rank, world_size) |
|
|