HunyuanVideo / test_attention.py
Fabrice-TIERCELIN's picture
Upload test_attention.py
21377e0 verified
raw
history blame
6.97 kB
import torch
import sys
import os
current_dir = os.path.dirname(os.path.abspath(__file__))
project_root = os.path.dirname(current_dir)
sys.path.append(project_root)
from hyvideo.modules.attenion import attention
from xfuser.core.long_ctx_attention import xFuserLongContextAttention
from xfuser.core.distributed import (
init_distributed_environment,
initialize_model_parallel,
# initialize_runtime_state,
)
def init_dist(backend="nccl"):
local_rank = int(os.environ["LOCAL_RANK"])
rank = int(os.environ["RANK"])
world_size = int(os.environ["WORLD_SIZE"])
print(
f"Initializing distributed environment with rank {rank}, world size {world_size}, local rank {local_rank}"
)
torch.cuda.set_device(local_rank)
init_distributed_environment(rank=rank, world_size=world_size)
# dist.init_process_group(backend=backend)
# construct a hybrid sequence parallel config (ulysses=2, ring = world_size // 2)
if world_size > 1:
ring_degree = world_size // 2
ulysses_degree = 2
else:
ring_degree = 1
ulysses_degree = 1
initialize_model_parallel(
sequence_parallel_degree=world_size,
ring_degree=ring_degree,
ulysses_degree=ulysses_degree,
)
return rank, world_size
def test_mm_double_stream_block_attention(rank, world_size):
device = torch.device(f"cuda:{rank}")
dtype = torch.bfloat16
batch_size = 1
seq_len_img = 118800
seq_len_txt = 256
heads_num = 24
head_dim = 128
img_q = torch.randn(batch_size, seq_len_img, heads_num, head_dim, device=device, dtype=dtype)
img_k = torch.randn(batch_size, seq_len_img, heads_num, head_dim, device=device, dtype=dtype)
img_v = torch.randn(batch_size, seq_len_img, heads_num, head_dim, device=device, dtype=dtype)
txt_q = torch.randn(batch_size, seq_len_txt, heads_num, head_dim, device=device, dtype=dtype)
txt_k = torch.randn(batch_size, seq_len_txt, heads_num, head_dim, device=device, dtype=dtype)
txt_v = torch.randn(batch_size, seq_len_txt, heads_num, head_dim, device=device, dtype=dtype)
with torch.no_grad():
torch.distributed.broadcast(img_q, src=0)
torch.distributed.broadcast(img_k, src=0)
torch.distributed.broadcast(img_v, src=0)
torch.distributed.broadcast(txt_q, src=0)
torch.distributed.broadcast(txt_k, src=0)
torch.distributed.broadcast(txt_v, src=0)
q = torch.cat((img_q, txt_q), dim=1)
k = torch.cat((img_k, txt_k), dim=1)
v = torch.cat((img_v, txt_v), dim=1)
cu_seqlens_q = torch.tensor([0, 118811, 119056], device='cuda:0', dtype=torch.int32)
cu_seqlens_kv = torch.tensor([0, 118811, 119056], device='cuda:0', dtype=torch.int32)
max_seqlen_q = 119056
max_seqlen_kv = 119056
mode = "torch" # "torch", "vanilla", "flash"
original_output = attention(
q,
k,
v,
mode=mode,
cu_seqlens_q=cu_seqlens_q,
cu_seqlens_kv=cu_seqlens_kv,
max_seqlen_q=max_seqlen_q,
max_seqlen_kv=max_seqlen_kv,
batch_size=batch_size
)
hybrid_seq_parallel_attn = xFuserLongContextAttention()
hybrid_seq_parallel_output = hybrid_seq_parallel_attn(
None,
img_q,
img_k,
img_v,
dropout_p=0.0,
causal=False,
joint_tensor_query=txt_q,
joint_tensor_key=txt_k,
joint_tensor_value=txt_v,
joint_strategy="rear",
)
b, s, a, d = hybrid_seq_parallel_output.shape
hybrid_seq_parallel_output = hybrid_seq_parallel_output.reshape(b, s, -1)
assert original_output.shape == hybrid_seq_parallel_output.shape, f"Shape mismatch: {original_output.shape} vs {hybrid_seq_parallel_output.shape}"
torch.testing.assert_close(original_output, hybrid_seq_parallel_output, rtol=1e-3, atol=1e-3)
print("test_mm_double_stream_block_attention Passed")
def test_mm_single_stream_block_attention(rank, world_size):
device = torch.device(f"cuda:{rank}")
dtype = torch.bfloat16
txt_len = 256
batch_size = 1
seq_len_img = 118800
seq_len_txt = 256
heads_num = 24
head_dim = 128
with torch.no_grad():
img_q = torch.randn(batch_size, seq_len_img, heads_num, head_dim, device=device, dtype=dtype)
img_k = torch.randn(batch_size, seq_len_img, heads_num, head_dim, device=device, dtype=dtype)
txt_q = torch.randn(batch_size, seq_len_txt, heads_num, head_dim, device=device, dtype=dtype)
txt_k = torch.randn(batch_size, seq_len_txt, heads_num, head_dim, device=device, dtype=dtype)
v = torch.randn(batch_size, seq_len_img + seq_len_txt, heads_num, head_dim, device=device, dtype=dtype)
torch.distributed.broadcast(img_q, src=0)
torch.distributed.broadcast(img_k, src=0)
torch.distributed.broadcast(txt_q, src=0)
torch.distributed.broadcast(txt_k, src=0)
torch.distributed.broadcast(v, src=0)
q = torch.cat((img_q, txt_q), dim=1)
k = torch.cat((img_k, txt_k), dim=1)
cu_seqlens_q = torch.tensor([0, 118811, 119056], device='cuda:0', dtype=torch.int32)
cu_seqlens_kv = torch.tensor([0, 118811, 119056], device='cuda:0', dtype=torch.int32)
max_seqlen_q = 119056
max_seqlen_kv = 119056
mode = "torch" # "torch", "vanilla", "flash"
original_output = attention(
q,
k,
v,
mode=mode,
cu_seqlens_q=cu_seqlens_q,
cu_seqlens_kv=cu_seqlens_kv,
max_seqlen_q=max_seqlen_q,
max_seqlen_kv=max_seqlen_kv,
batch_size=batch_size
)
hybrid_seq_parallel_attn = xFuserLongContextAttention()
hybrid_seq_parallel_output = hybrid_seq_parallel_attn(
None,
q[:, :-txt_len, :, :],
k[:, :-txt_len, :, :],
v[:, :-txt_len, :, :],
dropout_p=0.0,
causal=False,
joint_tensor_query=q[:, -txt_len:, :, :],
joint_tensor_key=k[:, -txt_len:, :, :],
joint_tensor_value=v[:, -txt_len:, :, :],
joint_strategy="rear",
)
b, s, a, d = hybrid_seq_parallel_output.shape
hybrid_seq_parallel_output = hybrid_seq_parallel_output.reshape(b, s, -1)
assert original_output.shape == hybrid_seq_parallel_output.shape, f"Shape mismatch: {original_output.shape} vs {hybrid_seq_parallel_output.shape}"
torch.testing.assert_close(original_output, hybrid_seq_parallel_output, rtol=1e-3, atol=1e-3)
print("test_mm_single_stream_block_attention Passed")
if __name__ == "__main__":
rank, world_size = init_dist()
test_mm_double_stream_block_attention(rank, world_size)
test_mm_single_stream_block_attention(rank, world_size)