Spaces:
Runtime error
Runtime error
File size: 12,845 Bytes
c2ae77e a755a71 c2ae77e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 |
import gradio as gr
import json
from difflib import Differ
import ffmpeg
import os
from pathlib import Path
import time
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
from transformers import MarianMTModel, MarianTokenizer
import pandas as pd
import re
import time
import os
from fuzzywuzzy import fuzz
from fastT5 import export_and_get_onnx_model
import torch
from transformers import pipeline
MODEL = "Finnish-NLP/wav2vec2-base-fi-voxpopuli-v2-finetuned"
marian_nmt_model = "Helsinki-NLP/opus-mt-tc-big-fi-en"
tokenizer_marian = MarianTokenizer.from_pretrained(marian_nmt_model)
model = MarianMTModel.from_pretrained(marian_nmt_model)
cuda = torch.device(
'cuda:0') if torch.cuda.is_available() else torch.device('cpu')
sr_pipeline_device = 0 if torch.cuda.is_available() else -1
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
speech_recognizer = pipeline(
task="automatic-speech-recognition",
model=f'{MODEL}',
tokenizer=f'{MODEL}',
framework="pt",
device=sr_pipeline_device,
)
model_checkpoint = 'Finnish-NLP/t5-small-nl24-casing-punctuation-correction'
tokenizer_t5 = AutoTokenizer.from_pretrained(model_checkpoint)
model_t5 = export_and_get_onnx_model(model_checkpoint)
#model_t5 = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint, from_flax=False, torch_dtype=torch.float32).to(device)
videos_out_path = Path("./videos_out")
videos_out_path.mkdir(parents=True, exist_ok=True)
samples_data = sorted(Path('examples').glob('*.json'))
SAMPLES = []
for file in samples_data:
with open(file) as f:
sample = json.load(f)
SAMPLES.append(sample)
VIDEOS = list(map(lambda x: [x['video']], SAMPLES))
total_inferences_since_reboot = 0
total_cuts_since_reboot = 0
async def speech_to_text(video_file_path):
"""
Takes a video path to convert to audio, transcribe audio channel to text timestamps
Using https://huggingface.co/tasks/automatic-speech-recognition pipeline
"""
global total_inferences_since_reboot
if(video_file_path == None):
raise ValueError("Error no video input")
video_path = Path(video_file_path)
try:
# convert video to audio 16k using PIPE to audio_memory
audio_memory, _ = ffmpeg.input(video_path).output(
'-', format="wav", ac=1, ar='16k').overwrite_output().global_args('-loglevel', 'quiet').run(capture_stdout=True)
except Exception as e:
raise RuntimeError("Error converting video to audio")
last_time = time.time()
try:
output = speech_recognizer(
audio_memory, return_timestamps="word", chunk_length_s=10, stride_length_s=(4, 2))
transcription = output["text"].lower()
timestamps = [[chunk["text"].lower(), chunk["timestamp"][0], chunk["timestamp"][1]]
for chunk in output['chunks']]
input_ids = tokenizer_t5(transcription, return_tensors="pt").input_ids.to(device)
outputs = model_t5.generate(input_ids, max_length=128)
case_corrected_text = tokenizer_t5.decode(outputs[0], skip_special_tokens=True)
translated = model.generate(**tokenizer_marian([case_corrected_text], return_tensors="pt", padding=True))
translated_plain = "".join([tokenizer_marian.decode(t, skip_special_tokens=True) for t in translated])
for timestamp in timestamps:
total_inferences_since_reboot += 1
df = pd.DataFrame(timestamps, columns = ['word', 'start','stop'])
df['start'] = df['start'].astype('float16')
df['stop'] = df['stop'].astype('float16')
print("\n\ntotal_inferences_since_reboot: ",
total_inferences_since_reboot, "\n\n")
return (transcription, transcription, timestamps,df, case_corrected_text, translated_plain)
except Exception as e:
raise RuntimeError("Error Running inference with local model", e)
def create_srt(text_out_t5, df):
df.columns = ['word', 'start', 'stop']
df_sentences = pd.DataFrame(columns=['sentence','start','stop','translated'])
found_match_value = 0
found_match_word = ""
t5_sentences = re.split('[.]|[?]|[!]', text_out_t5)
t5_sentences = [sentence.replace('.','').replace('?','').replace('!','') for sentence in t5_sentences if sentence]
for i, sentence in enumerate(t5_sentences):
sentence = sentence.lower().split(" ")
if i == 0:
df_subset = df[df['stop'] <10]
start = df.iloc[0]['start']
for j, word in enumerate(df_subset['word']):
temp_value = fuzz.partial_ratio((word), sentence[-1])
if temp_value > found_match_value:
found_match_value = temp_value
found_match_word = word
stop = df_subset[df_subset['word'] == found_match_word]
translated = model.generate(**tokenizer_marian(t5_sentences[i], return_tensors="pt", padding=True))
translated_plain = [tokenizer_marian.decode(t, skip_special_tokens=True) for t in translated]
dict_to_add = {
'sentence': t5_sentences[i],
'start': start,
'stop': stop.iloc[0]['stop'],
'translated': translated_plain[0]
}
df_sentences = df_sentences.append(dict_to_add, ignore_index=True)
new_start = df.iloc[stop.index.values[0]+1]['start']
new_stop = new_start + 10
else:
found_match_value = 0
found_match_word = ""
df_subset = df[(df['start'] >= new_start) & (df['stop'] <= new_stop)]
start = df_subset.iloc[0]['start']
for j, word in enumerate(df_subset['word']):
temp_value = fuzz.partial_ratio((word), sentence[-1])
if temp_value > found_match_value:
found_match_value = temp_value
found_match_word = word
stop = df_subset[df_subset['word'] == found_match_word]
translated = model.generate(**tokenizer_marian(t5_sentences[i], return_tensors="pt", padding=True))
translated_plain = [tokenizer_marian.decode(t, skip_special_tokens=True) for t in translated]
dict_to_add = {
'sentence': t5_sentences[i],
'start': start,
'stop': stop.iloc[0]['stop'],
'translated': translated_plain[0]
}
df_sentences = df_sentences.append(dict_to_add, ignore_index=True)
try:
new_start = df.iloc[stop.index.values[0]+1]['start']
new_stop = new_start + 10
except Exception as e:
df_sentences = df_sentences.iloc[0:i+1]
return df_sentences
def create_srt_and_burn(video_in, srt_sentences):
srt_sentences.columns = ['sentence', 'start', 'stop','translated']
srt_sentences.dropna(inplace=True)
srt_sentences['start'] = srt_sentences['start'].astype('float')
srt_sentences['stop'] = srt_sentences['stop'].astype('float')
with open('testi.srt','w') as file:
for i in range(len(srt_sentences)):
file.write(str(i+1))
file.write('\n')
start = (time.strftime('%H:%M:%S', time.gmtime(srt_sentences.iloc[i]['start'])))
if "." in str(srt_sentences.iloc[i]['start']):
if len(str(srt_sentences.iloc[i]['start']).split('.')[1]) > 3:
start = start + '.' + str(srt_sentences.iloc[i]['start']).split('.')[1][:3]
else:
start = start + '.' + str(srt_sentences.iloc[i]['start']).split('.')[1]
file.write(start)
stop = (time.strftime('%H:%M:%S', time.gmtime(srt_sentences.iloc[i]['stop'])))
if len(str(srt_sentences.iloc[i]['stop']).split('.')[1]) > 3:
stop = stop + '.' + str(srt_sentences.iloc[i]['stop']).split('.')[1][:3]
else:
stop = stop + '.' + str(srt_sentences.iloc[i]['stop']).split('.')[1]
file.write(' --> ')
file.write(stop)
file.write('\n')
file.writelines(srt_sentences.iloc[i]['translated'])
if int(i) != len(srt_sentences)-1:
file.write('\n\n')
try:
file1 = open('./testi.srt', 'r')
Lines = file1.readlines()
count = 0
# Strips the newline character
for line in Lines:
count += 1
video_out = str(Path(video_in)).replace('.mp4', '_out.mp4')
command = "ffmpeg -i {} -y -vf subtitles=./testi.srt {}".format(Path(video_in), Path(video_out))
os.system(command)
return video_out
except Exception as e:
print(e)
return video_out
# ---- Gradio Layout -----
video_in = gr.Video(label="Video file", interactive=True)
text_in = gr.Textbox(label="Transcription", lines=10, interactive=True)
text_out_t5 = gr.Textbox(label="Transcription T5", lines=10, interactive=True)
translation_out = gr.Textbox(label="Translation", lines=10, interactive=True)
text_out_timestamps = gr.Textbox(label="Word level timestamps", lines=10, interactive=True)
srt_sentences = gr.DataFrame(label="Srt lines", row_count=(0, "dynamic"))
video_out = gr.Video(label="Video Out")
diff_out = gr.HighlightedText(label="Cuts Diffs", combine_adjacent=True)
examples = gr.components.Dataset(
components=[video_in], samples=VIDEOS, type="index")
demo = gr.Blocks(enable_queue=True, css='''
#cut_btn, #reset_btn { align-self:stretch; }
#\\31 3 { max-width: 540px; }
.output-markdown {max-width: 65ch !important;}
''')
demo.encrypt = False
with demo:
transcription_var = gr.Variable()
timestamps_var = gr.Variable()
timestamps_df = gr.Dataframe(visible=False, row_count=(0, "dynamic"))
with gr.Row():
with gr.Column():
gr.Markdown('''
# Create videos with English subtitles from videos spoken in Finnish
This project is a quick proof of concept of a simple video editor where you can add English subtitles to Finnish videos.
This space currently only works for short videos (Up to 128 tokens) but will be improved in next versions.
Space uses our finetuned Finnish ASR models, Our pretrained + finetuned Finnish T5 model for casing+punctuation correction and Opus-MT models from Helsinki University for Finnish --> English translation.
This space was inspired by https://huggingface.co/spaces/radames/edit-video-by-editing-text
''')
with gr.Row():
examples.render()
def load_example(id):
video = SAMPLES[id]['video']
transcription = ''
timestamps = SAMPLES[id]['timestamps']
return (video, transcription, transcription, timestamps)
examples.click(
load_example,
inputs=[examples],
outputs=[video_in, text_in, transcription_var, timestamps_var],
queue=False)
with gr.Row():
with gr.Column():
video_in.render()
transcribe_btn = gr.Button("1. Press here to transcribe Audio")
transcribe_btn.click(speech_to_text, [video_in], [
text_in, transcription_var, text_out_timestamps,timestamps_df, text_out_t5, translation_out])
with gr.Row():
gr.Markdown('''
### Here you will get varying outputs from different parts of the processing
ASR model output, T5 model output which corrects casing + hyphenation, sentence level translations and word level timestamps''')
with gr.Row():
with gr.Column():
text_in.render()
with gr.Column():
text_out_t5.render()
with gr.Column():
translation_out.render()
with gr.Column():
text_out_timestamps.render()
with gr.Row():
with gr.Column():
translate_and_make_srt_btn = gr.Button("2. Press here to create rows for subtitles")
translate_and_make_srt_btn.click(create_srt, [text_out_t5, timestamps_df], [
srt_sentences])
with gr.Row():
with gr.Column():
srt_sentences.render()
with gr.Row():
with gr.Column():
translate_and_make_srt_btn = gr.Button("3. Press here to create subtitle file and insert translations to video")
translate_and_make_srt_btn.click(create_srt_and_burn, [video_in, srt_sentences], [
video_out])
video_out.render()
if __name__ == "__main__":
demo.launch(debug=True)
|