Esmail-AGumaan commited on
Commit
33e1004
·
verified ·
1 Parent(s): 4ea8388

Upload 6 files

Browse files
Files changed (6) hide show
  1. engine.py +36 -0
  2. get-pip.py +0 -0
  3. main.py +63 -0
  4. requirements.txt +8 -0
  5. setup.py +29 -0
  6. theme.js +31 -0
engine.py ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from fastapi import FastAPI, HTTPException
2
+ from fastapi.responses import FileResponse
3
+ from fastapi.staticfiles import StaticFiles
4
+ from pydantic import BaseModel
5
+ import uvicorn
6
+
7
+ from nano_engine import generate_image, apply_blueprint
8
+
9
+ app = FastAPI()
10
+
11
+ # Mount the 'static' directory to serve JavaScript, CSS, and HTML files
12
+ app.mount("/static", StaticFiles(directory="static"), name="static")
13
+
14
+ class ImageRequest(BaseModel):
15
+ blueprint_name: str
16
+
17
+ @app.post("/generate-image/")
18
+ async def generate_image_endpoint(request: ImageRequest):
19
+ # Call the function from engine.py to generate an image
20
+ sd_prompts, sd_cfg_scale, sd_num_inference_steps, sd_sampler, ollama_model, ollama_prompt = apply_blueprint(request.blueprint_name)
21
+ print(f"Sampler value: {sd_sampler}") # Add this line for debugging
22
+ image = generate_image(sd_prompts, sd_cfg_scale, sd_num_inference_steps, sd_sampler)
23
+
24
+ # Save the image and return its path
25
+ image_path = "static/generated_image.png"
26
+ image.save(image_path)
27
+
28
+ return {"image_url": f"/static/generated_image.png"}
29
+
30
+
31
+ @app.get("/static")
32
+ async def get_homepage():
33
+ return FileResponse("static/index.html")
34
+
35
+ if __name__ == "__main__":
36
+ uvicorn.run(app, host="0.0.0.0", port=8000)
get-pip.py ADDED
The diff for this file is too large to render. See raw diff
 
main.py ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import nanograd
2
+
3
+ from nanograd.RL import Cartpole, car # import reinforcement learning package
4
+ # Cartpole.run()
5
+ # car.run()
6
+
7
+ ###############################################################
8
+ from nanograd.models.stable_diffusion import sd_inference
9
+ sd_inference.run()
10
+
11
+ ##############################################################
12
+ from nanograd.analysis_lab import sentiment_analysis
13
+ # sentiment_analysis.run()
14
+
15
+ ############################################################
16
+ from nanograd import generate_dataset
17
+
18
+ # generate_dataset.tokenize()
19
+
20
+ ###########################################################
21
+
22
+ from nanograd.models.llama import inference_llama
23
+ from nanograd.models.GPT import inference_gpt
24
+ from nanograd.models.GPT import tokenizer
25
+
26
+ # inference_gpt.use_model()
27
+
28
+ # inference_llama.use_model()
29
+
30
+ # tokenizer.run_tokenizer()
31
+ ###########################################################
32
+ from nanograd.models import ollama
33
+ from nanograd.models import chat
34
+ # ollama.run() # test the model.
35
+ # chat.chat_with_models()
36
+ # chat.chat_models()
37
+ ###################################################
38
+
39
+
40
+ # if __name__ == "__main__":
41
+ # from nanograd.nn.engine import Value
42
+
43
+ # a = Value(-4.0)
44
+ # b = Value(2.0)
45
+ # c = a + b
46
+ # d = a + b + b**3
47
+ # c += c + 1
48
+ # c += 1 + c + (-a)
49
+ # d += d * 2 + (b + a).relu()
50
+ # d += 3 * d + (b - a).relu()
51
+ # d += 3 * d + (b - a).sigmoid(5)
52
+ # e = c - d
53
+ # f = e**2
54
+ # g = f / 2.0
55
+ # g += 10.0 / f
56
+ # print(f'{g.data:.4f}')
57
+ # g.backward()
58
+ # print(f'{a.grad:.4f}')
59
+ # print(f'{b.grad:.4f}')
60
+ # print(f'{e.grad:.4f}')
61
+
62
+
63
+ # import nanograd.nn.train_nn
requirements.txt ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ torch>=1.9.0
2
+ torchvision>=0.10.0
3
+ torchaudio>=0.9.0
4
+ numpy
5
+ pandas
6
+ matplotlib
7
+ transformers
8
+ litgpt
setup.py ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from setuptools import setup, find_packages
2
+
3
+ setup(
4
+ name='nanograd',
5
+ version='0.1.0',
6
+ packages=find_packages(),
7
+ install_requires=[
8
+ 'torch',
9
+ 'argparse',
10
+ 'tensorboard',
11
+ 'wget',
12
+ 'transformers',
13
+ 'litgpt',
14
+ 'tiktoken',
15
+ 'sentencepiece',
16
+ 'tqdm',
17
+ 'regex',
18
+ 'gradio',
19
+ 'trl',
20
+ 'datasets',
21
+ 'gym',
22
+ 'tinygrad',
23
+ ],
24
+ entry_points={
25
+ 'console_scripts': [
26
+ 'nanograd=nanograd.nanograd_CLI:main',
27
+ ],
28
+ },
29
+ )
theme.js ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ function createGradioAnimation() {
2
+ var container = document.createElement('div');
3
+ container.id = 'gradio-animation';
4
+ container.style.fontSize = '2em';
5
+ container.style.fontWeight = 'bold';
6
+ container.style.textAlign = 'center';
7
+ container.style.marginBottom = '20px';
8
+
9
+ var text = 'Welcome to nanograd Engine!';
10
+ for (var i = 0; i < text.length; i++) {
11
+ (function(i){
12
+ setTimeout(function(){
13
+ var letter = document.createElement('span');
14
+ letter.style.opacity = '0';
15
+ letter.style.transition = 'opacity 0.5s';
16
+ letter.innerText = text[i];
17
+
18
+ container.appendChild(letter);
19
+
20
+ setTimeout(function() {
21
+ letter.style.opacity = '1';
22
+ }, 50);
23
+ }, i * 250);
24
+ })(i);
25
+ }
26
+
27
+ var gradioContainer = document.querySelector('.gradio-container');
28
+ gradioContainer.insertBefore(container, gradioContainer.firstChild);
29
+
30
+ return 'Animation created';
31
+ }