Spaces:
Sleeping
Sleeping
Esmaeilkiani
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -4,25 +4,27 @@ import joblib
|
|
4 |
import ee
|
5 |
import geemap
|
6 |
|
7 |
-
# Earth Engine
|
8 |
service_account = 'earth-engine-service-account@ee-esmaeilkiani1387.iam.gserviceaccount.com'
|
9 |
credentials = ee.ServiceAccountCredentials(service_account, 'ee-esmaeilkiani1387-1b2c5e812a1d.json')
|
10 |
ee.Initialize(credentials)
|
11 |
|
12 |
-
# Load
|
13 |
model = joblib.load('updated_model.pkl')
|
14 |
-
|
15 |
-
# Load farm data
|
16 |
farm_data = pd.read_csv('Farm_NDRE_TimeSeries.csv')
|
17 |
farm_names = farm_data['Farm'].tolist()
|
18 |
|
19 |
-
# Function to calculate NDRE
|
20 |
def calculate_ndre(coordinates, start_date, end_date):
|
21 |
try:
|
|
|
|
|
|
|
|
|
22 |
roi = ee.Geometry.Point(coordinates)
|
23 |
imageCollection = ee.ImageCollection('COPERNICUS/S2_SR') \
|
24 |
.filterBounds(roi) \
|
25 |
-
.filterDate(
|
26 |
.filter(ee.Filter.lt('CLOUDY_PIXEL_PERCENTAGE', 20))
|
27 |
|
28 |
def ndre(image):
|
@@ -44,16 +46,15 @@ def calculate_ndre(coordinates, start_date, end_date):
|
|
44 |
st.error(f"Error calculating NDRE: {e}")
|
45 |
return None
|
46 |
|
47 |
-
# Streamlit
|
48 |
st.title("Farm Parameter Prediction App")
|
49 |
-
|
50 |
-
# User input
|
51 |
selected_farm = st.selectbox("Select Farm", farm_names)
|
52 |
farm_age = st.number_input("Farm Age (years)", min_value=0)
|
53 |
farm_variety = st.text_input("Farm Variety")
|
54 |
start_date = st.date_input("Start Date")
|
55 |
end_date = st.date_input("End Date")
|
56 |
|
|
|
57 |
selected_farm_data = farm_data[farm_data['Farm'] == selected_farm]
|
58 |
coordinates = (selected_farm_data['longitude'].iloc[0], selected_farm_data['latitude'].iloc[0])
|
59 |
|
@@ -67,37 +68,33 @@ if st.button('نمایش نقشه NDRE'):
|
|
67 |
Map.centerObject(ee.Geometry.Point(coordinates), 12)
|
68 |
|
69 |
vis_params = {'min': 0, 'max': 1, 'palette': ['blue', 'green', 'yellow', 'red']}
|
70 |
-
Map.addLayer(NDRE, vis_params, 'NDRE')
|
71 |
Map.to_streamlit(height=500)
|
72 |
else:
|
73 |
st.error("Unable to calculate NDRE.")
|
74 |
|
|
|
75 |
if st.button("Predict"):
|
76 |
-
# Retrieve NDRE value from session state, default to 0 if not set
|
77 |
ndre_value = st.session_state.get('ndre_value', 0)
|
78 |
|
79 |
-
# Prepare the user input DataFrame
|
80 |
user_input = pd.DataFrame({
|
81 |
-
'Age': [farm_age],
|
82 |
-
'Variety': [farm_variety],
|
83 |
-
'NDRE': [ndre_value]
|
84 |
})
|
85 |
|
86 |
-
# Additional features: calculate DayOfYear and Month from the start date
|
87 |
if start_date:
|
88 |
day_of_year = start_date.timetuple().tm_yday
|
89 |
month = start_date.month
|
90 |
user_input['DayOfYear'] = [day_of_year]
|
91 |
user_input['Month'] = [month]
|
92 |
|
93 |
-
# Reorder the columns to match the order expected by the model
|
94 |
user_input = user_input[['Age', 'DayOfYear', 'Month', 'Variety', 'NDRE']]
|
95 |
|
96 |
-
# Make predictions
|
97 |
prediction = model.predict(user_input)
|
98 |
|
99 |
st.write("Predictions:")
|
100 |
-
st.write(f"Brix: {prediction[0][0]}")
|
101 |
st.write(f"Pol: {prediction[0][1]}")
|
102 |
st.write(f"Purity: {prediction[0][2]}")
|
103 |
-
st.write(f"RS: {prediction[0][3]}")
|
|
|
4 |
import ee
|
5 |
import geemap
|
6 |
|
7 |
+
# Authenticate Earth Engine
|
8 |
service_account = 'earth-engine-service-account@ee-esmaeilkiani1387.iam.gserviceaccount.com'
|
9 |
credentials = ee.ServiceAccountCredentials(service_account, 'ee-esmaeilkiani1387-1b2c5e812a1d.json')
|
10 |
ee.Initialize(credentials)
|
11 |
|
12 |
+
# Load model and farm data
|
13 |
model = joblib.load('updated_model.pkl')
|
|
|
|
|
14 |
farm_data = pd.read_csv('Farm_NDRE_TimeSeries.csv')
|
15 |
farm_names = farm_data['Farm'].tolist()
|
16 |
|
17 |
+
# Function to calculate NDRE
|
18 |
def calculate_ndre(coordinates, start_date, end_date):
|
19 |
try:
|
20 |
+
# Convert start_date and end_date to strings
|
21 |
+
start_date_str = start_date.strftime('%Y-%m-%d')
|
22 |
+
end_date_str = end_date.strftime('%Y-%m-%d')
|
23 |
+
|
24 |
roi = ee.Geometry.Point(coordinates)
|
25 |
imageCollection = ee.ImageCollection('COPERNICUS/S2_SR') \
|
26 |
.filterBounds(roi) \
|
27 |
+
.filterDate(start_date_str, end_date_str) \
|
28 |
.filter(ee.Filter.lt('CLOUDY_PIXEL_PERCENTAGE', 20))
|
29 |
|
30 |
def ndre(image):
|
|
|
46 |
st.error(f"Error calculating NDRE: {e}")
|
47 |
return None
|
48 |
|
49 |
+
# Streamlit User Interface
|
50 |
st.title("Farm Parameter Prediction App")
|
|
|
|
|
51 |
selected_farm = st.selectbox("Select Farm", farm_names)
|
52 |
farm_age = st.number_input("Farm Age (years)", min_value=0)
|
53 |
farm_variety = st.text_input("Farm Variety")
|
54 |
start_date = st.date_input("Start Date")
|
55 |
end_date = st.date_input("End Date")
|
56 |
|
57 |
+
# Handling Farm Data Selection and NDRE Calculation
|
58 |
selected_farm_data = farm_data[farm_data['Farm'] == selected_farm]
|
59 |
coordinates = (selected_farm_data['longitude'].iloc[0], selected_farm_data['latitude'].iloc[0])
|
60 |
|
|
|
68 |
Map.centerObject(ee.Geometry.Point(coordinates), 12)
|
69 |
|
70 |
vis_params = {'min': 0, 'max': 1, 'palette': ['blue', 'green', 'yellow', 'red']}
|
71 |
+
Map.addLayer(ee.Image(NDRE), vis_params, 'NDRE')
|
72 |
Map.to_streamlit(height=500)
|
73 |
else:
|
74 |
st.error("Unable to calculate NDRE.")
|
75 |
|
76 |
+
# Making Predictions Using the Loaded Model
|
77 |
if st.button("Predict"):
|
|
|
78 |
ndre_value = st.session_state.get('ndre_value', 0)
|
79 |
|
|
|
80 |
user_input = pd.DataFrame({
|
81 |
+
'Age': [farm_age],
|
82 |
+
'Variety': [farm_variety],
|
83 |
+
'NDRE': [ndre_value]
|
84 |
})
|
85 |
|
|
|
86 |
if start_date:
|
87 |
day_of_year = start_date.timetuple().tm_yday
|
88 |
month = start_date.month
|
89 |
user_input['DayOfYear'] = [day_of_year]
|
90 |
user_input['Month'] = [month]
|
91 |
|
|
|
92 |
user_input = user_input[['Age', 'DayOfYear', 'Month', 'Variety', 'NDRE']]
|
93 |
|
|
|
94 |
prediction = model.predict(user_input)
|
95 |
|
96 |
st.write("Predictions:")
|
97 |
+
st.write(f"Brix: {prediction[0][0]}")
|
98 |
st.write(f"Pol: {prediction[0][1]}")
|
99 |
st.write(f"Purity: {prediction[0][2]}")
|
100 |
+
st.write(f"RS: {prediction[0][3]}")
|