Spaces:
Sleeping
Sleeping
Esmaeilkiani
commited on
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import ee
|
3 |
+
import geemap
|
4 |
+
import pandas as pd
|
5 |
+
from datetime import datetime, timedelta
|
6 |
+
import matplotlib.pyplot as plt
|
7 |
+
import folium
|
8 |
+
import os
|
9 |
+
|
10 |
+
# Constants
|
11 |
+
NDRE_HARVEST_THRESHOLD = 0.3
|
12 |
+
NDMI_HARVEST_THRESHOLD = 0.4
|
13 |
+
CSV_URL = "https://huggingface.co/datasets/your-username/sugarcane-farms/raw/main/farms.csv"
|
14 |
+
PRIVATE_KEY_PATH = os.environ.get("GEE_PRIVATE_KEY_PATH")
|
15 |
+
|
16 |
+
# Page configuration
|
17 |
+
st.set_page_config(page_title="Sugarcane Field Monitoring", layout="wide")
|
18 |
+
|
19 |
+
# GEE Authentication
|
20 |
+
def authenticate_gee():
|
21 |
+
try:
|
22 |
+
credentials = ee.ServiceAccountCredentials(None, PRIVATE_KEY_PATH)
|
23 |
+
ee.Initialize(credentials)
|
24 |
+
return True
|
25 |
+
except Exception as e:
|
26 |
+
st.error(f"Failed to authenticate with Google Earth Engine: {str(e)}")
|
27 |
+
return False
|
28 |
+
|
29 |
+
# Load farm data
|
30 |
+
@st.cache_data
|
31 |
+
def load_farm_data():
|
32 |
+
try:
|
33 |
+
df = pd.read_csv(CSV_URL)
|
34 |
+
if not all(col in df.columns for col in ["farm_name", "latitude", "longitude"]):
|
35 |
+
raise ValueError("CSV file is missing required columns")
|
36 |
+
return df
|
37 |
+
except Exception as e:
|
38 |
+
st.error(f"Error loading farm data: {str(e)}")
|
39 |
+
return None
|
40 |
+
|
41 |
+
# Get indices data from GEE
|
42 |
+
def get_indices_data(farm_coords, start_date, end_date):
|
43 |
+
point = ee.Geometry.Point(farm_coords)
|
44 |
+
s2 = ee.ImageCollection("COPERNICUS/S2_SR")
|
45 |
+
|
46 |
+
filtered = s2.filterBounds(point).filterDate(start_date, end_date)
|
47 |
+
|
48 |
+
def add_indices(image):
|
49 |
+
ndre = image.normalizedDifference(['B8', 'B5']).rename('NDRE')
|
50 |
+
ndmi = image.normalizedDifference(['B8A', 'B11']).rename('NDMI')
|
51 |
+
return image.addBands([ndre, ndmi])
|
52 |
+
|
53 |
+
with_indices = filtered.map(add_indices)
|
54 |
+
|
55 |
+
time_series = with_indices.select(['NDRE', 'NDMI']).getRegion(point, 500)
|
56 |
+
|
57 |
+
return time_series
|
58 |
+
|
59 |
+
# Extract index data from GEE results
|
60 |
+
def extract_index_data(data, index_name):
|
61 |
+
try:
|
62 |
+
dates = [datetime.utcfromtimestamp(d[3] / 1000) for d in data[1:]]
|
63 |
+
values = [float(d[4]) if d[4] is not None else None for d in data[1:]]
|
64 |
+
return pd.DataFrame({
|
65 |
+
'date': dates,
|
66 |
+
index_name: values
|
67 |
+
}).dropna().set_index('date')
|
68 |
+
except Exception as e:
|
69 |
+
st.error(f"Error extracting {index_name} data: {str(e)}")
|
70 |
+
return pd.DataFrame()
|
71 |
+
|
72 |
+
# Main application
|
73 |
+
def main():
|
74 |
+
if not authenticate_gee():
|
75 |
+
return
|
76 |
+
|
77 |
+
st.title("Sugarcane Field Monitoring")
|
78 |
+
|
79 |
+
farm_data = load_farm_data()
|
80 |
+
if farm_data is None:
|
81 |
+
return
|
82 |
+
|
83 |
+
# Sidebar
|
84 |
+
st.sidebar.header("Settings")
|
85 |
+
farm_name = st.sidebar.selectbox("Select Farm", farm_data['farm_name'].tolist())
|
86 |
+
start_date = st.sidebar.date_input("Start Date", datetime.now() - timedelta(days=30))
|
87 |
+
end_date = st.sidebar.date_input("End Date", datetime.now())
|
88 |
+
|
89 |
+
if end_date > datetime.now().date():
|
90 |
+
st.sidebar.error("End date cannot be in the future.")
|
91 |
+
return
|
92 |
+
|
93 |
+
indices = st.sidebar.multiselect("Select Indices", ["NDRE", "NDMI"], default=["NDRE", "NDMI"])
|
94 |
+
|
95 |
+
if st.sidebar.button("Submit"):
|
96 |
+
farm_row = farm_data[farm_data['farm_name'] == farm_name].iloc[0]
|
97 |
+
farm_coords = [farm_row['longitude'], farm_row['latitude']]
|
98 |
+
|
99 |
+
with st.spinner("Fetching data..."):
|
100 |
+
gee_data = get_indices_data(farm_coords, start_date, end_date)
|
101 |
+
|
102 |
+
if gee_data:
|
103 |
+
ndre_data = extract_index_data(gee_data.getInfo(), "NDRE")
|
104 |
+
ndmi_data = extract_index_data(gee_data.getInfo(), "NDMI")
|
105 |
+
|
106 |
+
# Plotting
|
107 |
+
fig, ax = plt.subplots(figsize=(12, 6))
|
108 |
+
|
109 |
+
if "NDRE" in indices and not ndre_data.empty:
|
110 |
+
ax.plot(ndre_data.index, ndre_data["NDRE"], label="NDRE")
|
111 |
+
ax.axhline(y=NDRE_HARVEST_THRESHOLD, color='r', linestyle='--', label="NDRE Harvest Threshold")
|
112 |
+
|
113 |
+
if "NDMI" in indices and not ndmi_data.empty:
|
114 |
+
ax.plot(ndmi_data.index, ndmi_data["NDMI"], label="NDMI")
|
115 |
+
ax.axhline(y=NDMI_HARVEST_THRESHOLD, color='g', linestyle='--', label="NDMI Harvest Threshold")
|
116 |
+
|
117 |
+
ax.set_xlabel("Date")
|
118 |
+
ax.set_ylabel("Index Value")
|
119 |
+
ax.set_title(f"Time Series for {farm_name}")
|
120 |
+
ax.legend()
|
121 |
+
|
122 |
+
st.pyplot(fig)
|
123 |
+
|
124 |
+
# Harvest Analysis
|
125 |
+
if "NDRE" in indices and not ndre_data.empty:
|
126 |
+
if ndre_data["NDRE"].iloc[-1] > NDRE_HARVEST_THRESHOLD:
|
127 |
+
st.success("NDRE indicates the field may be ready for harvest.")
|
128 |
+
else:
|
129 |
+
st.info("NDRE suggests the field is not yet ready for harvest.")
|
130 |
+
|
131 |
+
if "NDMI" in indices and not ndmi_data.empty:
|
132 |
+
if ndmi_data["NDMI"].iloc[-1] > NDMI_HARVEST_THRESHOLD:
|
133 |
+
st.success("NDMI indicates good moisture content for harvest.")
|
134 |
+
else:
|
135 |
+
st.info("NDMI suggests suboptimal moisture content for harvest.")
|
136 |
+
|
137 |
+
# Map
|
138 |
+
m = geemap.Map(center=farm_coords, zoom=12)
|
139 |
+
m.add_basemap("OpenStreetMap")
|
140 |
+
|
141 |
+
if "NDRE" in indices:
|
142 |
+
ndre_layer = geemap.ee_tile_layer(
|
143 |
+
with_indices.select('NDRE').mean(),
|
144 |
+
{'min': 0, 'max': 1, 'palette': ['red', 'yellow', 'green']},
|
145 |
+
'NDRE'
|
146 |
+
)
|
147 |
+
m.add_layer(ndre_layer)
|
148 |
+
|
149 |
+
if "NDMI" in indices:
|
150 |
+
ndmi_layer = geemap.ee_tile_layer(
|
151 |
+
with_indices.select('NDMI').mean(),
|
152 |
+
{'min': -1, 'max': 1, 'palette': ['red', 'white', 'blue']},
|
153 |
+
'NDMI'
|
154 |
+
)
|
155 |
+
m.add_layer(ndmi_layer)
|
156 |
+
|
157 |
+
marker = folium.Marker(
|
158 |
+
location=farm_coords[::-1],
|
159 |
+
popup=f"Farm: {farm_name}<br>Lat: {farm_coords[1]}<br>Lon: {farm_coords[0]}"
|
160 |
+
)
|
161 |
+
marker.add_to(m)
|
162 |
+
|
163 |
+
m.to_streamlit(height=600)
|
164 |
+
|
165 |
+
# Map Download
|
166 |
+
map_html = m.to_html()
|
167 |
+
st.download_button(
|
168 |
+
label="Download Map",
|
169 |
+
data=map_html,
|
170 |
+
file_name="sugarcane_field_map.html",
|
171 |
+
mime="text/html"
|
172 |
+
)
|
173 |
+
else:
|
174 |
+
st.error("Failed to retrieve data from Google Earth Engine.")
|
175 |
+
|
176 |
+
if __name__ == "__main__":
|
177 |
+
main()
|