# pylint: disable=C0301 ''' This module contains the AudioProcessor class and related functions for processing audio data. It utilizes various libraries and models to perform tasks such as preprocessing, feature extraction, and audio separation. The class is initialized with configuration parameters and can process audio files using the provided models. ''' import math import os import librosa import numpy as np import torch from audio_separator.separator import Separator from einops import rearrange from transformers import Wav2Vec2FeatureExtractor from hallo.models.wav2vec import Wav2VecModel from hallo.utils.util import resample_audio class AudioProcessor: """ AudioProcessor is a class that handles the processing of audio files. It takes care of preprocessing the audio files, extracting features using wav2vec models, and separating audio signals if needed. :param sample_rate: Sampling rate of the audio file :param fps: Frames per second for the extracted features :param wav2vec_model_path: Path to the wav2vec model :param only_last_features: Whether to only use the last features :param audio_separator_model_path: Path to the audio separator model :param audio_separator_model_name: Name of the audio separator model :param cache_dir: Directory to cache the intermediate results :param device: Device to run the processing on """ def __init__( self, sample_rate, fps, wav2vec_model_path, only_last_features, audio_separator_model_path:str=None, audio_separator_model_name:str=None, cache_dir:str='', device="cuda:0", ) -> None: self.sample_rate = sample_rate self.fps = fps self.device = device self.audio_encoder = Wav2VecModel.from_pretrained(wav2vec_model_path, local_files_only=True).to(device=device) self.audio_encoder.feature_extractor._freeze_parameters() self.only_last_features = only_last_features if audio_separator_model_name is not None: try: os.makedirs(cache_dir, exist_ok=True) except OSError as _: print("Fail to create the output cache dir.") self.audio_separator = Separator( output_dir=cache_dir, output_single_stem="vocals", model_file_dir=audio_separator_model_path, ) self.audio_separator.load_model(audio_separator_model_name) assert self.audio_separator.model_instance is not None, "Fail to load audio separate model." else: self.audio_separator=None print("Use audio directly without vocals seperator.") self.wav2vec_feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(wav2vec_model_path, local_files_only=True) def preprocess(self, wav_file: str, clip_length: int): """ Preprocess a WAV audio file by separating the vocals from the background and resampling it to a 16 kHz sample rate. The separated vocal track is then converted into wav2vec2 for further processing or analysis. Args: wav_file (str): The path to the WAV file to be processed. This file should be accessible and in WAV format. Raises: RuntimeError: Raises an exception if the WAV file cannot be processed. This could be due to issues such as file not found, unsupported file format, or errors during the audio processing steps. Returns: torch.tensor: Returns an audio embedding as a torch.tensor """ if self.audio_separator is not None: # 1. separate vocals # TODO: process in memory outputs = self.audio_separator.separate(wav_file) if len(outputs) <= 0: raise RuntimeError("Audio separate failed.") vocal_audio_file = outputs[0] vocal_audio_name, _ = os.path.splitext(vocal_audio_file) vocal_audio_file = os.path.join(self.audio_separator.output_dir, vocal_audio_file) vocal_audio_file = resample_audio(vocal_audio_file, os.path.join(self.audio_separator.output_dir, f"{vocal_audio_name}-16k.wav"), self.sample_rate) else: vocal_audio_file=wav_file # 2. extract wav2vec features speech_array, sampling_rate = librosa.load(vocal_audio_file, sr=self.sample_rate) audio_feature = np.squeeze(self.wav2vec_feature_extractor(speech_array, sampling_rate=sampling_rate).input_values) seq_len = math.ceil(len(audio_feature) / self.sample_rate * self.fps) audio_length = seq_len audio_feature = torch.from_numpy(audio_feature).float().to(device=self.device) if seq_len % clip_length != 0: audio_feature = torch.nn.functional.pad(audio_feature, (0, (clip_length - seq_len % clip_length) * (self.sample_rate // self.fps)), 'constant', 0.0) seq_len += clip_length - seq_len % clip_length audio_feature = audio_feature.unsqueeze(0) with torch.no_grad(): embeddings = self.audio_encoder(audio_feature, seq_len=seq_len, output_hidden_states=True) assert len(embeddings) > 0, "Fail to extract audio embedding" if self.only_last_features: audio_emb = embeddings.last_hidden_state.squeeze() else: audio_emb = torch.stack(embeddings.hidden_states[1:], dim=1).squeeze(0) audio_emb = rearrange(audio_emb, "b s d -> s b d") audio_emb = audio_emb.cpu().detach() return audio_emb, audio_length def get_embedding(self, wav_file: str): """preprocess wav audio file convert to embeddings Args: wav_file (str): The path to the WAV file to be processed. This file should be accessible and in WAV format. Returns: torch.tensor: Returns an audio embedding as a torch.tensor """ speech_array, sampling_rate = librosa.load( wav_file, sr=self.sample_rate) assert sampling_rate == 16000, "The audio sample rate must be 16000" audio_feature = np.squeeze(self.wav2vec_feature_extractor( speech_array, sampling_rate=sampling_rate).input_values) seq_len = math.ceil(len(audio_feature) / self.sample_rate * self.fps) audio_feature = torch.from_numpy( audio_feature).float().to(device=self.device) audio_feature = audio_feature.unsqueeze(0) with torch.no_grad(): embeddings = self.audio_encoder( audio_feature, seq_len=seq_len, output_hidden_states=True) assert len(embeddings) > 0, "Fail to extract audio embedding" if self.only_last_features: audio_emb = embeddings.last_hidden_state.squeeze() else: audio_emb = torch.stack( embeddings.hidden_states[1:], dim=1).squeeze(0) audio_emb = rearrange(audio_emb, "b s d -> s b d") audio_emb = audio_emb.cpu().detach() return audio_emb def close(self): """ TODO: to be implemented """ return self def __enter__(self): return self def __exit__(self, _exc_type, _exc_val, _exc_tb): self.close()