# pylint: disable=C0116 # pylint: disable=W0718 # pylint: disable=R1732 """ utils.py This module provides utility functions for various tasks such as setting random seeds, importing modules from files, managing checkpoint files, and saving video files from sequences of PIL images. Functions: seed_everything(seed) import_filename(filename) delete_additional_ckpt(base_path, num_keep) save_videos_from_pil(pil_images, path, fps=8) Dependencies: importlib os os.path as osp random shutil sys pathlib.Path av cv2 mediapipe as mp numpy as np torch torchvision einops.rearrange moviepy.editor.AudioFileClip, VideoClip PIL.Image Examples: seed_everything(42) imported_module = import_filename('path/to/your/module.py') delete_additional_ckpt('path/to/checkpoints', 1) save_videos_from_pil(pil_images, 'output/video.mp4', fps=12) The functions in this module ensure reproducibility of experiments by seeding random number generators, allow dynamic importing of modules, manage checkpoint files by deleting extra ones, and provide a way to save sequences of images as video files. Function Details: seed_everything(seed) Seeds all random number generators to ensure reproducibility. import_filename(filename) Imports a module from a given file location. delete_additional_ckpt(base_path, num_keep) Deletes additional checkpoint files in the given directory. save_videos_from_pil(pil_images, path, fps=8) Saves a sequence of images as a video using the Pillow library. Attributes: _ (str): Placeholder for static type checking """ import importlib import os import os.path as osp import random import shutil import subprocess import sys from pathlib import Path import av import cv2 import mediapipe as mp import numpy as np import torch import torchvision from einops import rearrange from moviepy.editor import AudioFileClip, VideoClip from PIL import Image def seed_everything(seed): """ Seeds all random number generators to ensure reproducibility. Args: seed (int): The seed value to set for all random number generators. """ torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) np.random.seed(seed % (2**32)) random.seed(seed) def import_filename(filename): """ Import a module from a given file location. Args: filename (str): The path to the file containing the module to be imported. Returns: module: The imported module. Raises: ImportError: If the module cannot be imported. Example: >>> imported_module = import_filename('path/to/your/module.py') """ spec = importlib.util.spec_from_file_location("mymodule", filename) module = importlib.util.module_from_spec(spec) sys.modules[spec.name] = module spec.loader.exec_module(module) return module def delete_additional_ckpt(base_path, num_keep): """ Deletes additional checkpoint files in the given directory. Args: base_path (str): The path to the directory containing the checkpoint files. num_keep (int): The number of most recent checkpoint files to keep. Returns: None Raises: FileNotFoundError: If the base_path does not exist. Example: >>> delete_additional_ckpt('path/to/checkpoints', 1) # This will delete all but the most recent checkpoint file in 'path/to/checkpoints'. """ dirs = [] for d in os.listdir(base_path): if d.startswith("checkpoint-"): dirs.append(d) num_tot = len(dirs) if num_tot <= num_keep: return # ensure ckpt is sorted and delete the ealier! del_dirs = sorted(dirs, key=lambda x: int( x.split("-")[-1]))[: num_tot - num_keep] for d in del_dirs: path_to_dir = osp.join(base_path, d) if osp.exists(path_to_dir): shutil.rmtree(path_to_dir) def save_videos_from_pil(pil_images, path, fps=8): """ Save a sequence of images as a video using the Pillow library. Args: pil_images (List[PIL.Image]): A list of PIL.Image objects representing the frames of the video. path (str): The output file path for the video. fps (int, optional): The frames per second rate of the video. Defaults to 8. Returns: None Raises: ValueError: If the save format is not supported. This function takes a list of PIL.Image objects and saves them as a video file with a specified frame rate. The output file format is determined by the file extension of the provided path. Supported formats include .mp4, .avi, and .mkv. The function uses the Pillow library to handle the image processing and video creation. """ save_fmt = Path(path).suffix os.makedirs(os.path.dirname(path), exist_ok=True) width, height = pil_images[0].size if save_fmt == ".mp4": codec = "libx264" container = av.open(path, "w") stream = container.add_stream(codec, rate=fps) stream.width = width stream.height = height for pil_image in pil_images: # pil_image = Image.fromarray(image_arr).convert("RGB") av_frame = av.VideoFrame.from_image(pil_image) container.mux(stream.encode(av_frame)) container.mux(stream.encode()) container.close() elif save_fmt == ".gif": pil_images[0].save( fp=path, format="GIF", append_images=pil_images[1:], save_all=True, duration=(1 / fps * 1000), loop=0, ) else: raise ValueError("Unsupported file type. Use .mp4 or .gif.") def save_videos_grid(videos: torch.Tensor, path: str, rescale=False, n_rows=6, fps=8): """ Save a grid of videos as an animation or video. Args: videos (torch.Tensor): A tensor of shape (batch_size, channels, time, height, width) containing the videos to save. path (str): The path to save the video grid. Supported formats are .mp4, .avi, and .gif. rescale (bool, optional): If True, rescale the video to the original resolution. Defaults to False. n_rows (int, optional): The number of rows in the video grid. Defaults to 6. fps (int, optional): The frame rate of the saved video. Defaults to 8. Raises: ValueError: If the video format is not supported. Returns: None """ videos = rearrange(videos, "b c t h w -> t b c h w") # height, width = videos.shape[-2:] outputs = [] for x in videos: x = torchvision.utils.make_grid(x, nrow=n_rows) # (c h w) x = x.transpose(0, 1).transpose(1, 2).squeeze(-1) # (h w c) if rescale: x = (x + 1.0) / 2.0 # -1,1 -> 0,1 x = (x * 255).numpy().astype(np.uint8) x = Image.fromarray(x) outputs.append(x) os.makedirs(os.path.dirname(path), exist_ok=True) save_videos_from_pil(outputs, path, fps) def read_frames(video_path): """ Reads video frames from a given video file. Args: video_path (str): The path to the video file. Returns: container (av.container.InputContainer): The input container object containing the video stream. Raises: FileNotFoundError: If the video file is not found. RuntimeError: If there is an error in reading the video stream. The function reads the video frames from the specified video file using the Python AV library (av). It returns an input container object that contains the video stream. If the video file is not found, it raises a FileNotFoundError, and if there is an error in reading the video stream, it raises a RuntimeError. """ container = av.open(video_path) video_stream = next(s for s in container.streams if s.type == "video") frames = [] for packet in container.demux(video_stream): for frame in packet.decode(): image = Image.frombytes( "RGB", (frame.width, frame.height), frame.to_rgb().to_ndarray(), ) frames.append(image) return frames def get_fps(video_path): """ Get the frame rate (FPS) of a video file. Args: video_path (str): The path to the video file. Returns: int: The frame rate (FPS) of the video file. """ container = av.open(video_path) video_stream = next(s for s in container.streams if s.type == "video") fps = video_stream.average_rate container.close() return fps def tensor_to_video(tensor, output_video_file, audio_source, fps=25): """ Converts a Tensor with shape [c, f, h, w] into a video and adds an audio track from the specified audio file. Args: tensor (Tensor): The Tensor to be converted, shaped [c, f, h, w]. output_video_file (str): The file path where the output video will be saved. audio_source (str): The path to the audio file (WAV file) that contains the audio track to be added. fps (int): The frame rate of the output video. Default is 25 fps. """ tensor = tensor.permute(1, 2, 3, 0).cpu( ).numpy() # convert to [f, h, w, c] tensor = np.clip(tensor * 255, 0, 255).astype( np.uint8 ) # to [0, 255] def make_frame(t): # get index frame_index = min(int(t * fps), tensor.shape[0] - 1) return tensor[frame_index] new_video_clip = VideoClip(make_frame, duration=tensor.shape[0] / fps) audio_clip = AudioFileClip(audio_source).subclip(0, tensor.shape[0] / fps) new_video_clip = new_video_clip.set_audio(audio_clip) new_video_clip.write_videofile(output_video_file, fps=fps, audio_codec='aac') silhouette_ids = [ 10, 338, 297, 332, 284, 251, 389, 356, 454, 323, 361, 288, 397, 365, 379, 378, 400, 377, 152, 148, 176, 149, 150, 136, 172, 58, 132, 93, 234, 127, 162, 21, 54, 103, 67, 109 ] lip_ids = [61, 185, 40, 39, 37, 0, 267, 269, 270, 409, 291, 146, 91, 181, 84, 17, 314, 405, 321, 375] def compute_face_landmarks(detection_result, h, w): """ Compute face landmarks from a detection result. Args: detection_result (mediapipe.solutions.face_mesh.FaceMesh): The detection result containing face landmarks. h (int): The height of the video frame. w (int): The width of the video frame. Returns: face_landmarks_list (list): A list of face landmarks. """ face_landmarks_list = detection_result.face_landmarks if len(face_landmarks_list) != 1: print("#face is invalid:", len(face_landmarks_list)) return [] return [[p.x * w, p.y * h] for p in face_landmarks_list[0]] def get_landmark(file): """ This function takes a file as input and returns the facial landmarks detected in the file. Args: file (str): The path to the file containing the video or image to be processed. Returns: Tuple[List[float], List[float]]: A tuple containing two lists of floats representing the x and y coordinates of the facial landmarks. """ model_path = "pretrained_models/face_analysis/models/face_landmarker_v2_with_blendshapes.task" BaseOptions = mp.tasks.BaseOptions FaceLandmarker = mp.tasks.vision.FaceLandmarker FaceLandmarkerOptions = mp.tasks.vision.FaceLandmarkerOptions VisionRunningMode = mp.tasks.vision.RunningMode # Create a face landmarker instance with the video mode: options = FaceLandmarkerOptions( base_options=BaseOptions(model_asset_path=model_path), running_mode=VisionRunningMode.IMAGE, ) with FaceLandmarker.create_from_options(options) as landmarker: image = mp.Image.create_from_file(str(file)) height, width = image.height, image.width face_landmarker_result = landmarker.detect(image) face_landmark = compute_face_landmarks( face_landmarker_result, height, width) return np.array(face_landmark), height, width def get_lip_mask(landmarks, height, width, out_path): """ Extracts the lip region from the given landmarks and saves it as an image. Parameters: landmarks (numpy.ndarray): Array of facial landmarks. height (int): Height of the output lip mask image. width (int): Width of the output lip mask image. out_path (pathlib.Path): Path to save the lip mask image. """ lip_landmarks = np.take(landmarks, lip_ids, 0) min_xy_lip = np.round(np.min(lip_landmarks, 0)) max_xy_lip = np.round(np.max(lip_landmarks, 0)) min_xy_lip[0], max_xy_lip[0], min_xy_lip[1], max_xy_lip[1] = expand_region( [min_xy_lip[0], max_xy_lip[0], min_xy_lip[1], max_xy_lip[1]], width, height, 2.0) lip_mask = np.zeros((height, width), dtype=np.uint8) lip_mask[round(min_xy_lip[1]):round(max_xy_lip[1]), round(min_xy_lip[0]):round(max_xy_lip[0])] = 255 cv2.imwrite(str(out_path), lip_mask) def get_face_mask(landmarks, height, width, out_path, expand_ratio): """ Generate a face mask based on the given landmarks. Args: landmarks (numpy.ndarray): The landmarks of the face. height (int): The height of the output face mask image. width (int): The width of the output face mask image. out_path (pathlib.Path): The path to save the face mask image. Returns: None. The face mask image is saved at the specified path. """ face_landmarks = np.take(landmarks, silhouette_ids, 0) min_xy_face = np.round(np.min(face_landmarks, 0)) max_xy_face = np.round(np.max(face_landmarks, 0)) min_xy_face[0], max_xy_face[0], min_xy_face[1], max_xy_face[1] = expand_region( [min_xy_face[0], max_xy_face[0], min_xy_face[1], max_xy_face[1]], width, height, expand_ratio) face_mask = np.zeros((height, width), dtype=np.uint8) face_mask[round(min_xy_face[1]):round(max_xy_face[1]), round(min_xy_face[0]):round(max_xy_face[0])] = 255 cv2.imwrite(str(out_path), face_mask) def get_mask(file, cache_dir, face_expand_raio): """ Generate a face mask based on the given landmarks and save it to the specified cache directory. Args: file (str): The path to the file containing the landmarks. cache_dir (str): The directory to save the generated face mask. Returns: None """ landmarks, height, width = get_landmark(file) file_name = os.path.basename(file).split(".")[0] get_lip_mask(landmarks, height, width, os.path.join( cache_dir, f"{file_name}_lip_mask.png")) get_face_mask(landmarks, height, width, os.path.join( cache_dir, f"{file_name}_face_mask.png"), face_expand_raio) get_blur_mask(os.path.join( cache_dir, f"{file_name}_face_mask.png"), os.path.join( cache_dir, f"{file_name}_face_mask_blur.png"), kernel_size=(51, 51)) get_blur_mask(os.path.join( cache_dir, f"{file_name}_lip_mask.png"), os.path.join( cache_dir, f"{file_name}_sep_lip.png"), kernel_size=(31, 31)) get_background_mask(os.path.join( cache_dir, f"{file_name}_face_mask_blur.png"), os.path.join( cache_dir, f"{file_name}_sep_background.png")) get_sep_face_mask(os.path.join( cache_dir, f"{file_name}_face_mask_blur.png"), os.path.join( cache_dir, f"{file_name}_sep_lip.png"), os.path.join( cache_dir, f"{file_name}_sep_face.png")) def expand_region(region, image_w, image_h, expand_ratio=1.0): """ Expand the given region by a specified ratio. Args: region (tuple): A tuple containing the coordinates (min_x, max_x, min_y, max_y) of the region. image_w (int): The width of the image. image_h (int): The height of the image. expand_ratio (float, optional): The ratio by which the region should be expanded. Defaults to 1.0. Returns: tuple: A tuple containing the expanded coordinates (min_x, max_x, min_y, max_y) of the region. """ min_x, max_x, min_y, max_y = region mid_x = (max_x + min_x) // 2 side_len_x = (max_x - min_x) * expand_ratio mid_y = (max_y + min_y) // 2 side_len_y = (max_y - min_y) * expand_ratio min_x = mid_x - side_len_x // 2 max_x = mid_x + side_len_x // 2 min_y = mid_y - side_len_y // 2 max_y = mid_y + side_len_y // 2 if min_x < 0: max_x -= min_x min_x = 0 if max_x > image_w: min_x -= max_x - image_w max_x = image_w if min_y < 0: max_y -= min_y min_y = 0 if max_y > image_h: min_y -= max_y - image_h max_y = image_h return round(min_x), round(max_x), round(min_y), round(max_y) def get_blur_mask(file_path, output_file_path, resize_dim=(64, 64), kernel_size=(101, 101)): """ Read, resize, blur, normalize, and save an image. Parameters: file_path (str): Path to the input image file. output_dir (str): Path to the output directory to save blurred images. resize_dim (tuple): Dimensions to resize the images to. kernel_size (tuple): Size of the kernel to use for Gaussian blur. """ # Read the mask image mask = cv2.imread(file_path, cv2.IMREAD_GRAYSCALE) # Check if the image is loaded successfully if mask is not None: # Resize the mask image resized_mask = cv2.resize(mask, resize_dim) # Apply Gaussian blur to the resized mask image blurred_mask = cv2.GaussianBlur(resized_mask, kernel_size, 0) # Normalize the blurred image normalized_mask = cv2.normalize( blurred_mask, None, 0, 255, cv2.NORM_MINMAX) # Save the normalized mask image cv2.imwrite(output_file_path, normalized_mask) return f"Processed, normalized, and saved: {output_file_path}" return f"Failed to load image: {file_path}" def get_background_mask(file_path, output_file_path): """ Read an image, invert its values, and save the result. Parameters: file_path (str): Path to the input image file. output_dir (str): Path to the output directory to save the inverted image. """ # Read the image image = cv2.imread(file_path, cv2.IMREAD_GRAYSCALE) if image is None: print(f"Failed to load image: {file_path}") return # Invert the image inverted_image = 1.0 - ( image / 255.0 ) # Assuming the image values are in [0, 255] range # Convert back to uint8 inverted_image = (inverted_image * 255).astype(np.uint8) # Save the inverted image cv2.imwrite(output_file_path, inverted_image) print(f"Processed and saved: {output_file_path}") def get_sep_face_mask(file_path1, file_path2, output_file_path): """ Read two images, subtract the second one from the first, and save the result. Parameters: output_dir (str): Path to the output directory to save the subtracted image. """ # Read the images mask1 = cv2.imread(file_path1, cv2.IMREAD_GRAYSCALE) mask2 = cv2.imread(file_path2, cv2.IMREAD_GRAYSCALE) if mask1 is None or mask2 is None: print(f"Failed to load images: {file_path1}") return # Ensure the images are the same size if mask1.shape != mask2.shape: print( f"Image shapes do not match for {file_path1}: {mask1.shape} vs {mask2.shape}" ) return # Subtract the second mask from the first result_mask = cv2.subtract(mask1, mask2) # Save the result mask image cv2.imwrite(output_file_path, result_mask) print(f"Processed and saved: {output_file_path}") def resample_audio(input_audio_file: str, output_audio_file: str, sample_rate: int): p = subprocess.Popen([ "ffmpeg", "-y", "-v", "error", "-i", input_audio_file, "-ar", str(sample_rate), output_audio_file ]) ret = p.wait() assert ret == 0, "Resample audio failed!" return output_audio_file def get_face_region(image_path: str, detector): try: image = cv2.imread(image_path) if image is None: print(f"Failed to open image: {image_path}. Skipping...") return None, None mp_image = mp.Image(image_format=mp.ImageFormat.SRGB, data=image) detection_result = detector.detect(mp_image) # Adjust mask creation for the three-channel image mask = np.zeros_like(image, dtype=np.uint8) for detection in detection_result.detections: bbox = detection.bounding_box start_point = (int(bbox.origin_x), int(bbox.origin_y)) end_point = (int(bbox.origin_x + bbox.width), int(bbox.origin_y + bbox.height)) cv2.rectangle(mask, start_point, end_point, (255, 255, 255), thickness=-1) save_path = image_path.replace("images", "face_masks") os.makedirs(os.path.dirname(save_path), exist_ok=True) cv2.imwrite(save_path, mask) # print(f"Processed and saved {save_path}") return image_path, mask except Exception as e: print(f"Error processing image {image_path}: {e}") return None, None