Spaces:
Configuration error
Configuration error
# pylint: disable=R0801 | |
# pylint: disable=E1101 | |
# pylint: disable=R0402 | |
# pylint: disable=W1203 | |
""" | |
This is the main file for the UNet3DConditionModel, which defines the UNet3D model architecture. | |
The UNet3D model is a 3D convolutional neural network designed for image segmentation and | |
other computer vision tasks. It consists of an encoder, a decoder, and skip connections between | |
the corresponding layers of the encoder and decoder. The model can handle 3D data and | |
performs well on tasks such as image segmentation, object detection, and video analysis. | |
This file contains the necessary imports, the main UNet3DConditionModel class, and its | |
methods for setting attention slice, setting gradient checkpointing, setting attention | |
processor, and the forward method for model inference. | |
The module provides a comprehensive solution for 3D image segmentation tasks and can be | |
easily extended for other computer vision tasks as well. | |
""" | |
from collections import OrderedDict | |
from dataclasses import dataclass | |
from os import PathLike | |
from pathlib import Path | |
from typing import Dict, List, Optional, Tuple, Union | |
import torch | |
import torch.nn as nn | |
import torch.utils.checkpoint | |
from diffusers.configuration_utils import ConfigMixin, register_to_config | |
from diffusers.models.attention_processor import AttentionProcessor | |
from diffusers.models.embeddings import TimestepEmbedding, Timesteps | |
from diffusers.models.modeling_utils import ModelMixin | |
from diffusers.utils import (SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, | |
BaseOutput, logging) | |
from safetensors.torch import load_file | |
from .resnet import InflatedConv3d, InflatedGroupNorm | |
from .unet_3d_blocks import (UNetMidBlock3DCrossAttn, get_down_block, | |
get_up_block) | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
class UNet3DConditionOutput(BaseOutput): | |
""" | |
Data class that serves as the output of the UNet3DConditionModel. | |
Attributes: | |
sample (`torch.FloatTensor`): | |
A tensor representing the processed sample. The shape and nature of this tensor will depend on the | |
specific configuration of the model and the input data. | |
""" | |
sample: torch.FloatTensor | |
class UNet3DConditionModel(ModelMixin, ConfigMixin): | |
""" | |
A 3D UNet model designed to handle conditional image and video generation tasks. This model is particularly | |
suited for tasks that require the generation of 3D data, such as volumetric medical imaging or 3D video | |
generation, while incorporating additional conditioning information. | |
The model consists of an encoder-decoder structure with skip connections. It utilizes a series of downsampling | |
and upsampling blocks, with a middle block for further processing. Each block can be customized with different | |
types of layers and attention mechanisms. | |
Parameters: | |
sample_size (`int`, optional): The size of the input sample. | |
in_channels (`int`, defaults to 8): The number of input channels. | |
out_channels (`int`, defaults to 8): The number of output channels. | |
center_input_sample (`bool`, defaults to False): Whether to center the input sample. | |
flip_sin_to_cos (`bool`, defaults to True): Whether to flip the sine to cosine in the time embedding. | |
freq_shift (`int`, defaults to 0): The frequency shift for the time embedding. | |
down_block_types (`Tuple[str]`): A tuple of strings specifying the types of downsampling blocks. | |
mid_block_type (`str`): The type of middle block. | |
up_block_types (`Tuple[str]`): A tuple of strings specifying the types of upsampling blocks. | |
only_cross_attention (`Union[bool, Tuple[bool]]`): Whether to use only cross-attention. | |
block_out_channels (`Tuple[int]`): A tuple of integers specifying the output channels for each block. | |
layers_per_block (`int`, defaults to 2): The number of layers per block. | |
downsample_padding (`int`, defaults to 1): The padding used in downsampling. | |
mid_block_scale_factor (`float`, defaults to 1): The scale factor for the middle block. | |
act_fn (`str`, defaults to 'silu'): The activation function to be used. | |
norm_num_groups (`int`, defaults to 32): The number of groups for normalization. | |
norm_eps (`float`, defaults to 1e-5): The epsilon for normalization. | |
cross_attention_dim (`int`, defaults to 1280): The dimension for cross-attention. | |
attention_head_dim (`Union[int, Tuple[int]]`): The dimension for attention heads. | |
dual_cross_attention (`bool`, defaults to False): Whether to use dual cross-attention. | |
use_linear_projection (`bool`, defaults to False): Whether to use linear projection. | |
class_embed_type (`str`, optional): The type of class embedding. | |
num_class_embeds (`int`, optional): The number of class embeddings. | |
upcast_attention (`bool`, defaults to False): Whether to upcast attention. | |
resnet_time_scale_shift (`str`, defaults to 'default'): The time scale shift for the ResNet. | |
use_inflated_groupnorm (`bool`, defaults to False): Whether to use inflated group normalization. | |
use_motion_module (`bool`, defaults to False): Whether to use a motion module. | |
motion_module_resolutions (`Tuple[int]`): A tuple of resolutions for the motion module. | |
motion_module_mid_block (`bool`, defaults to False): Whether to use a motion module in the middle block. | |
motion_module_decoder_only (`bool`, defaults to False): Whether to use the motion module only in the decoder. | |
motion_module_type (`str`, optional): The type of motion module. | |
motion_module_kwargs (`dict`): Keyword arguments for the motion module. | |
unet_use_cross_frame_attention (`bool`, optional): Whether to use cross-frame attention in the UNet. | |
unet_use_temporal_attention (`bool`, optional): Whether to use temporal attention in the UNet. | |
use_audio_module (`bool`, defaults to False): Whether to use an audio module. | |
audio_attention_dim (`int`, defaults to 768): The dimension for audio attention. | |
The model supports various features such as gradient checkpointing, attention processors, and sliced attention | |
computation, making it flexible and efficient for different computational requirements and use cases. | |
The forward method of the model accepts a sample, timestep, and encoder hidden states as input, and it returns | |
the processed sample as output. The method also supports additional conditioning information such as class | |
labels, audio embeddings, and masks for specialized tasks. | |
The from_pretrained_2d class method allows loading a pre-trained 2D UNet model and adapting it for 3D tasks by | |
incorporating motion modules and other 3D specific features. | |
""" | |
_supports_gradient_checkpointing = True | |
def __init__( | |
self, | |
sample_size: Optional[int] = None, | |
in_channels: int = 8, | |
out_channels: int = 8, | |
flip_sin_to_cos: bool = True, | |
freq_shift: int = 0, | |
down_block_types: Tuple[str] = ( | |
"CrossAttnDownBlock3D", | |
"CrossAttnDownBlock3D", | |
"CrossAttnDownBlock3D", | |
"DownBlock3D", | |
), | |
mid_block_type: str = "UNetMidBlock3DCrossAttn", | |
up_block_types: Tuple[str] = ( | |
"UpBlock3D", | |
"CrossAttnUpBlock3D", | |
"CrossAttnUpBlock3D", | |
"CrossAttnUpBlock3D", | |
), | |
only_cross_attention: Union[bool, Tuple[bool]] = False, | |
block_out_channels: Tuple[int] = (320, 640, 1280, 1280), | |
layers_per_block: int = 2, | |
downsample_padding: int = 1, | |
mid_block_scale_factor: float = 1, | |
act_fn: str = "silu", | |
norm_num_groups: int = 32, | |
norm_eps: float = 1e-5, | |
cross_attention_dim: int = 1280, | |
attention_head_dim: Union[int, Tuple[int]] = 8, | |
dual_cross_attention: bool = False, | |
use_linear_projection: bool = False, | |
class_embed_type: Optional[str] = None, | |
num_class_embeds: Optional[int] = None, | |
upcast_attention: bool = False, | |
resnet_time_scale_shift: str = "default", | |
use_inflated_groupnorm=False, | |
# Additional | |
use_motion_module=False, | |
motion_module_resolutions=(1, 2, 4, 8), | |
motion_module_mid_block=False, | |
motion_module_decoder_only=False, | |
motion_module_type=None, | |
motion_module_kwargs=None, | |
unet_use_cross_frame_attention=None, | |
unet_use_temporal_attention=None, | |
# audio | |
use_audio_module=False, | |
audio_attention_dim=768, | |
stack_enable_blocks_name=None, | |
stack_enable_blocks_depth=None, | |
): | |
super().__init__() | |
self.sample_size = sample_size | |
time_embed_dim = block_out_channels[0] * 4 | |
# input | |
self.conv_in = InflatedConv3d( | |
in_channels, block_out_channels[0], kernel_size=3, padding=(1, 1) | |
) | |
# time | |
self.time_proj = Timesteps( | |
block_out_channels[0], flip_sin_to_cos, freq_shift) | |
timestep_input_dim = block_out_channels[0] | |
self.time_embedding = TimestepEmbedding( | |
timestep_input_dim, time_embed_dim) | |
# class embedding | |
if class_embed_type is None and num_class_embeds is not None: | |
self.class_embedding = nn.Embedding( | |
num_class_embeds, time_embed_dim) | |
elif class_embed_type == "timestep": | |
self.class_embedding = TimestepEmbedding( | |
timestep_input_dim, time_embed_dim) | |
elif class_embed_type == "identity": | |
self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim) | |
else: | |
self.class_embedding = None | |
self.down_blocks = nn.ModuleList([]) | |
self.mid_block = None | |
self.up_blocks = nn.ModuleList([]) | |
if isinstance(only_cross_attention, bool): | |
only_cross_attention = [ | |
only_cross_attention] * len(down_block_types) | |
if isinstance(attention_head_dim, int): | |
attention_head_dim = (attention_head_dim,) * len(down_block_types) | |
# down | |
output_channel = block_out_channels[0] | |
for i, down_block_type in enumerate(down_block_types): | |
res = 2**i | |
input_channel = output_channel | |
output_channel = block_out_channels[i] | |
is_final_block = i == len(block_out_channels) - 1 | |
down_block = get_down_block( | |
down_block_type, | |
num_layers=layers_per_block, | |
in_channels=input_channel, | |
out_channels=output_channel, | |
temb_channels=time_embed_dim, | |
add_downsample=not is_final_block, | |
resnet_eps=norm_eps, | |
resnet_act_fn=act_fn, | |
resnet_groups=norm_num_groups, | |
cross_attention_dim=cross_attention_dim, | |
attn_num_head_channels=attention_head_dim[i], | |
downsample_padding=downsample_padding, | |
dual_cross_attention=dual_cross_attention, | |
use_linear_projection=use_linear_projection, | |
only_cross_attention=only_cross_attention[i], | |
upcast_attention=upcast_attention, | |
resnet_time_scale_shift=resnet_time_scale_shift, | |
unet_use_cross_frame_attention=unet_use_cross_frame_attention, | |
unet_use_temporal_attention=unet_use_temporal_attention, | |
use_inflated_groupnorm=use_inflated_groupnorm, | |
use_motion_module=use_motion_module | |
and (res in motion_module_resolutions) | |
and (not motion_module_decoder_only), | |
motion_module_type=motion_module_type, | |
motion_module_kwargs=motion_module_kwargs, | |
use_audio_module=use_audio_module, | |
audio_attention_dim=audio_attention_dim, | |
depth=i, | |
stack_enable_blocks_name=stack_enable_blocks_name, | |
stack_enable_blocks_depth=stack_enable_blocks_depth, | |
) | |
self.down_blocks.append(down_block) | |
# mid | |
if mid_block_type == "UNetMidBlock3DCrossAttn": | |
self.mid_block = UNetMidBlock3DCrossAttn( | |
in_channels=block_out_channels[-1], | |
temb_channels=time_embed_dim, | |
resnet_eps=norm_eps, | |
resnet_act_fn=act_fn, | |
output_scale_factor=mid_block_scale_factor, | |
resnet_time_scale_shift=resnet_time_scale_shift, | |
cross_attention_dim=cross_attention_dim, | |
attn_num_head_channels=attention_head_dim[-1], | |
resnet_groups=norm_num_groups, | |
dual_cross_attention=dual_cross_attention, | |
use_linear_projection=use_linear_projection, | |
upcast_attention=upcast_attention, | |
unet_use_cross_frame_attention=unet_use_cross_frame_attention, | |
unet_use_temporal_attention=unet_use_temporal_attention, | |
use_inflated_groupnorm=use_inflated_groupnorm, | |
use_motion_module=use_motion_module and motion_module_mid_block, | |
motion_module_type=motion_module_type, | |
motion_module_kwargs=motion_module_kwargs, | |
use_audio_module=use_audio_module, | |
audio_attention_dim=audio_attention_dim, | |
depth=3, | |
stack_enable_blocks_name=stack_enable_blocks_name, | |
stack_enable_blocks_depth=stack_enable_blocks_depth, | |
) | |
else: | |
raise ValueError(f"unknown mid_block_type : {mid_block_type}") | |
# count how many layers upsample the videos | |
self.num_upsamplers = 0 | |
# up | |
reversed_block_out_channels = list(reversed(block_out_channels)) | |
reversed_attention_head_dim = list(reversed(attention_head_dim)) | |
only_cross_attention = list(reversed(only_cross_attention)) | |
output_channel = reversed_block_out_channels[0] | |
for i, up_block_type in enumerate(up_block_types): | |
res = 2 ** (3 - i) | |
is_final_block = i == len(block_out_channels) - 1 | |
prev_output_channel = output_channel | |
output_channel = reversed_block_out_channels[i] | |
input_channel = reversed_block_out_channels[ | |
min(i + 1, len(block_out_channels) - 1) | |
] | |
# add upsample block for all BUT final layer | |
if not is_final_block: | |
add_upsample = True | |
self.num_upsamplers += 1 | |
else: | |
add_upsample = False | |
up_block = get_up_block( | |
up_block_type, | |
num_layers=layers_per_block + 1, | |
in_channels=input_channel, | |
out_channels=output_channel, | |
prev_output_channel=prev_output_channel, | |
temb_channels=time_embed_dim, | |
add_upsample=add_upsample, | |
resnet_eps=norm_eps, | |
resnet_act_fn=act_fn, | |
resnet_groups=norm_num_groups, | |
cross_attention_dim=cross_attention_dim, | |
attn_num_head_channels=reversed_attention_head_dim[i], | |
dual_cross_attention=dual_cross_attention, | |
use_linear_projection=use_linear_projection, | |
only_cross_attention=only_cross_attention[i], | |
upcast_attention=upcast_attention, | |
resnet_time_scale_shift=resnet_time_scale_shift, | |
unet_use_cross_frame_attention=unet_use_cross_frame_attention, | |
unet_use_temporal_attention=unet_use_temporal_attention, | |
use_inflated_groupnorm=use_inflated_groupnorm, | |
use_motion_module=use_motion_module | |
and (res in motion_module_resolutions), | |
motion_module_type=motion_module_type, | |
motion_module_kwargs=motion_module_kwargs, | |
use_audio_module=use_audio_module, | |
audio_attention_dim=audio_attention_dim, | |
depth=3-i, | |
stack_enable_blocks_name=stack_enable_blocks_name, | |
stack_enable_blocks_depth=stack_enable_blocks_depth, | |
) | |
self.up_blocks.append(up_block) | |
prev_output_channel = output_channel | |
# out | |
if use_inflated_groupnorm: | |
self.conv_norm_out = InflatedGroupNorm( | |
num_channels=block_out_channels[0], | |
num_groups=norm_num_groups, | |
eps=norm_eps, | |
) | |
else: | |
self.conv_norm_out = nn.GroupNorm( | |
num_channels=block_out_channels[0], | |
num_groups=norm_num_groups, | |
eps=norm_eps, | |
) | |
self.conv_act = nn.SiLU() | |
self.conv_out = InflatedConv3d( | |
block_out_channels[0], out_channels, kernel_size=3, padding=1 | |
) | |
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors | |
def attn_processors(self) -> Dict[str, AttentionProcessor]: | |
r""" | |
Returns: | |
`dict` of attention processors: A dictionary containing all attention processors used in the model with | |
indexed by its weight name. | |
""" | |
# set recursively | |
processors = {} | |
def fn_recursive_add_processors( | |
name: str, | |
module: torch.nn.Module, | |
processors: Dict[str, AttentionProcessor], | |
): | |
if hasattr(module, "set_processor"): | |
processors[f"{name}.processor"] = module.processor | |
for sub_name, child in module.named_children(): | |
if "temporal_transformer" not in sub_name: | |
fn_recursive_add_processors( | |
f"{name}.{sub_name}", child, processors) | |
return processors | |
for name, module in self.named_children(): | |
if "temporal_transformer" not in name: | |
fn_recursive_add_processors(name, module, processors) | |
return processors | |
def set_attention_slice(self, slice_size): | |
r""" | |
Enable sliced attention computation. | |
When this option is enabled, the attention module will split the input tensor in slices, to compute attention | |
in several steps. This is useful to save some memory in exchange for a small speed decrease. | |
Args: | |
slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`): | |
When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If | |
`"max"`, maxium amount of memory will be saved by running only one slice at a time. If a number is | |
provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim` | |
must be a multiple of `slice_size`. | |
""" | |
sliceable_head_dims = [] | |
def fn_recursive_retrieve_slicable_dims(module: torch.nn.Module): | |
if hasattr(module, "set_attention_slice"): | |
sliceable_head_dims.append(module.sliceable_head_dim) | |
for child in module.children(): | |
fn_recursive_retrieve_slicable_dims(child) | |
# retrieve number of attention layers | |
for module in self.children(): | |
fn_recursive_retrieve_slicable_dims(module) | |
num_slicable_layers = len(sliceable_head_dims) | |
if slice_size == "auto": | |
# half the attention head size is usually a good trade-off between | |
# speed and memory | |
slice_size = [dim // 2 for dim in sliceable_head_dims] | |
elif slice_size == "max": | |
# make smallest slice possible | |
slice_size = num_slicable_layers * [1] | |
slice_size = ( | |
num_slicable_layers * [slice_size] | |
if not isinstance(slice_size, list) | |
else slice_size | |
) | |
if len(slice_size) != len(sliceable_head_dims): | |
raise ValueError( | |
f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different" | |
f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}." | |
) | |
for i, size in enumerate(slice_size): | |
dim = sliceable_head_dims[i] | |
if size is not None and size > dim: | |
raise ValueError( | |
f"size {size} has to be smaller or equal to {dim}.") | |
# Recursively walk through all the children. | |
# Any children which exposes the set_attention_slice method | |
# gets the message | |
def fn_recursive_set_attention_slice( | |
module: torch.nn.Module, slice_size: List[int] | |
): | |
if hasattr(module, "set_attention_slice"): | |
module.set_attention_slice(slice_size.pop()) | |
for child in module.children(): | |
fn_recursive_set_attention_slice(child, slice_size) | |
reversed_slice_size = list(reversed(slice_size)) | |
for module in self.children(): | |
fn_recursive_set_attention_slice(module, reversed_slice_size) | |
def _set_gradient_checkpointing(self, module, value=False): | |
if hasattr(module, "gradient_checkpointing"): | |
module.gradient_checkpointing = value | |
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_attn_processor | |
def set_attn_processor( | |
self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]] | |
): | |
r""" | |
Sets the attention processor to use to compute attention. | |
Parameters: | |
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): | |
The instantiated processor class or a dictionary of processor classes that will be set as the processor | |
for **all** `Attention` layers. | |
If `processor` is a dict, the key needs to define the path to the corresponding cross attention | |
processor. This is strongly recommended when setting trainable attention processors. | |
""" | |
count = len(self.attn_processors.keys()) | |
if isinstance(processor, dict) and len(processor) != count: | |
raise ValueError( | |
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" | |
f" number of attention layers: {count}. Please make sure to pass {count} processor classes." | |
) | |
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): | |
if hasattr(module, "set_processor"): | |
if not isinstance(processor, dict): | |
module.set_processor(processor) | |
else: | |
module.set_processor(processor.pop(f"{name}.processor")) | |
for sub_name, child in module.named_children(): | |
if "temporal_transformer" not in sub_name: | |
fn_recursive_attn_processor( | |
f"{name}.{sub_name}", child, processor) | |
for name, module in self.named_children(): | |
if "temporal_transformer" not in name: | |
fn_recursive_attn_processor(name, module, processor) | |
def forward( | |
self, | |
sample: torch.FloatTensor, | |
timestep: Union[torch.Tensor, float, int], | |
encoder_hidden_states: torch.Tensor, | |
audio_embedding: Optional[torch.Tensor] = None, | |
class_labels: Optional[torch.Tensor] = None, | |
mask_cond_fea: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
full_mask: Optional[torch.Tensor] = None, | |
face_mask: Optional[torch.Tensor] = None, | |
lip_mask: Optional[torch.Tensor] = None, | |
motion_scale: Optional[torch.Tensor] = None, | |
down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None, | |
mid_block_additional_residual: Optional[torch.Tensor] = None, | |
return_dict: bool = True, | |
# start: bool = False, | |
) -> Union[UNet3DConditionOutput, Tuple]: | |
r""" | |
Args: | |
sample (`torch.FloatTensor`): (batch, channel, height, width) noisy inputs tensor | |
timestep (`torch.FloatTensor` or `float` or `int`): (batch) timesteps | |
encoder_hidden_states (`torch.FloatTensor`): (batch, sequence_length, feature_dim) encoder hidden states | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple. | |
Returns: | |
[`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`: | |
[`~models.unet_2d_condition.UNet2DConditionOutput`] if `return_dict` is True, otherwise a `tuple`. When | |
returning a tuple, the first element is the sample tensor. | |
""" | |
# By default samples have to be AT least a multiple of the overall upsampling factor. | |
# The overall upsampling factor is equal to 2 ** (# num of upsampling layears). | |
# However, the upsampling interpolation output size can be forced to fit any upsampling size | |
# on the fly if necessary. | |
default_overall_up_factor = 2**self.num_upsamplers | |
# upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor` | |
forward_upsample_size = False | |
upsample_size = None | |
if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]): | |
logger.info( | |
"Forward upsample size to force interpolation output size.") | |
forward_upsample_size = True | |
# prepare attention_mask | |
if attention_mask is not None: | |
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0 | |
attention_mask = attention_mask.unsqueeze(1) | |
# center input if necessary | |
if self.config.center_input_sample: | |
sample = 2 * sample - 1.0 | |
# time | |
timesteps = timestep | |
if not torch.is_tensor(timesteps): | |
# This would be a good case for the `match` statement (Python 3.10+) | |
is_mps = sample.device.type == "mps" | |
if isinstance(timestep, float): | |
dtype = torch.float32 if is_mps else torch.float64 | |
else: | |
dtype = torch.int32 if is_mps else torch.int64 | |
timesteps = torch.tensor( | |
[timesteps], dtype=dtype, device=sample.device) | |
elif len(timesteps.shape) == 0: | |
timesteps = timesteps[None].to(sample.device) | |
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML | |
timesteps = timesteps.expand(sample.shape[0]) | |
t_emb = self.time_proj(timesteps) | |
# timesteps does not contain any weights and will always return f32 tensors | |
# but time_embedding might actually be running in fp16. so we need to cast here. | |
# there might be better ways to encapsulate this. | |
t_emb = t_emb.to(dtype=self.dtype) | |
emb = self.time_embedding(t_emb) | |
if self.class_embedding is not None: | |
if class_labels is None: | |
raise ValueError( | |
"class_labels should be provided when num_class_embeds > 0" | |
) | |
if self.config.class_embed_type == "timestep": | |
class_labels = self.time_proj(class_labels) | |
class_emb = self.class_embedding(class_labels).to(dtype=self.dtype) | |
emb = emb + class_emb | |
# pre-process | |
sample = self.conv_in(sample) | |
if mask_cond_fea is not None: | |
sample = sample + mask_cond_fea | |
# down | |
down_block_res_samples = (sample,) | |
for downsample_block in self.down_blocks: | |
if ( | |
hasattr(downsample_block, "has_cross_attention") | |
and downsample_block.has_cross_attention | |
): | |
sample, res_samples = downsample_block( | |
hidden_states=sample, | |
temb=emb, | |
encoder_hidden_states=encoder_hidden_states, | |
attention_mask=attention_mask, | |
full_mask=full_mask, | |
face_mask=face_mask, | |
lip_mask=lip_mask, | |
audio_embedding=audio_embedding, | |
motion_scale=motion_scale, | |
) | |
# print("") | |
else: | |
sample, res_samples = downsample_block( | |
hidden_states=sample, | |
temb=emb, | |
encoder_hidden_states=encoder_hidden_states, | |
# audio_embedding=audio_embedding, | |
) | |
# print("") | |
down_block_res_samples += res_samples | |
if down_block_additional_residuals is not None: | |
new_down_block_res_samples = () | |
for down_block_res_sample, down_block_additional_residual in zip( | |
down_block_res_samples, down_block_additional_residuals | |
): | |
down_block_res_sample = ( | |
down_block_res_sample + down_block_additional_residual | |
) | |
new_down_block_res_samples += (down_block_res_sample,) | |
down_block_res_samples = new_down_block_res_samples | |
# mid | |
sample = self.mid_block( | |
sample, | |
emb, | |
encoder_hidden_states=encoder_hidden_states, | |
attention_mask=attention_mask, | |
full_mask=full_mask, | |
face_mask=face_mask, | |
lip_mask=lip_mask, | |
audio_embedding=audio_embedding, | |
motion_scale=motion_scale, | |
) | |
if mid_block_additional_residual is not None: | |
sample = sample + mid_block_additional_residual | |
# up | |
for i, upsample_block in enumerate(self.up_blocks): | |
is_final_block = i == len(self.up_blocks) - 1 | |
res_samples = down_block_res_samples[-len(upsample_block.resnets):] | |
down_block_res_samples = down_block_res_samples[ | |
: -len(upsample_block.resnets) | |
] | |
# if we have not reached the final block and need to forward the | |
# upsample size, we do it here | |
if not is_final_block and forward_upsample_size: | |
upsample_size = down_block_res_samples[-1].shape[2:] | |
if ( | |
hasattr(upsample_block, "has_cross_attention") | |
and upsample_block.has_cross_attention | |
): | |
sample = upsample_block( | |
hidden_states=sample, | |
temb=emb, | |
res_hidden_states_tuple=res_samples, | |
encoder_hidden_states=encoder_hidden_states, | |
upsample_size=upsample_size, | |
attention_mask=attention_mask, | |
full_mask=full_mask, | |
face_mask=face_mask, | |
lip_mask=lip_mask, | |
audio_embedding=audio_embedding, | |
motion_scale=motion_scale, | |
) | |
else: | |
sample = upsample_block( | |
hidden_states=sample, | |
temb=emb, | |
res_hidden_states_tuple=res_samples, | |
upsample_size=upsample_size, | |
encoder_hidden_states=encoder_hidden_states, | |
# audio_embedding=audio_embedding, | |
) | |
# post-process | |
sample = self.conv_norm_out(sample) | |
sample = self.conv_act(sample) | |
sample = self.conv_out(sample) | |
if not return_dict: | |
return (sample,) | |
return UNet3DConditionOutput(sample=sample) | |
def from_pretrained_2d( | |
cls, | |
pretrained_model_path: PathLike, | |
motion_module_path: PathLike, | |
subfolder=None, | |
unet_additional_kwargs=None, | |
mm_zero_proj_out=False, | |
use_landmark=True, | |
): | |
""" | |
Load a pre-trained 2D UNet model from a given directory. | |
Parameters: | |
pretrained_model_path (`str` or `PathLike`): | |
Path to the directory containing a pre-trained 2D UNet model. | |
dtype (`torch.dtype`, *optional*): | |
The data type of the loaded model. If not provided, the default data type is used. | |
device (`torch.device`, *optional*): | |
The device on which the loaded model will be placed. If not provided, the default device is used. | |
**kwargs (`Any`): | |
Additional keyword arguments passed to the model. | |
Returns: | |
`UNet3DConditionModel`: | |
The loaded 2D UNet model. | |
""" | |
pretrained_model_path = Path(pretrained_model_path) | |
motion_module_path = Path(motion_module_path) | |
if subfolder is not None: | |
pretrained_model_path = pretrained_model_path.joinpath(subfolder) | |
logger.info( | |
f"loaded temporal unet's pretrained weights from {pretrained_model_path} ..." | |
) | |
config_file = pretrained_model_path / "config.json" | |
if not (config_file.exists() and config_file.is_file()): | |
raise RuntimeError( | |
f"{config_file} does not exist or is not a file") | |
unet_config = cls.load_config(config_file) | |
unet_config["_class_name"] = cls.__name__ | |
unet_config["down_block_types"] = [ | |
"CrossAttnDownBlock3D", | |
"CrossAttnDownBlock3D", | |
"CrossAttnDownBlock3D", | |
"DownBlock3D", | |
] | |
unet_config["up_block_types"] = [ | |
"UpBlock3D", | |
"CrossAttnUpBlock3D", | |
"CrossAttnUpBlock3D", | |
"CrossAttnUpBlock3D", | |
] | |
unet_config["mid_block_type"] = "UNetMidBlock3DCrossAttn" | |
if use_landmark: | |
unet_config["in_channels"] = 8 | |
unet_config["out_channels"] = 8 | |
model = cls.from_config(unet_config, **unet_additional_kwargs) | |
# load the vanilla weights | |
if pretrained_model_path.joinpath(SAFETENSORS_WEIGHTS_NAME).exists(): | |
logger.debug( | |
f"loading safeTensors weights from {pretrained_model_path} ..." | |
) | |
state_dict = load_file( | |
pretrained_model_path.joinpath(SAFETENSORS_WEIGHTS_NAME), device="cpu" | |
) | |
elif pretrained_model_path.joinpath(WEIGHTS_NAME).exists(): | |
logger.debug(f"loading weights from {pretrained_model_path} ...") | |
state_dict = torch.load( | |
pretrained_model_path.joinpath(WEIGHTS_NAME), | |
map_location="cpu", | |
weights_only=True, | |
) | |
else: | |
raise FileNotFoundError( | |
f"no weights file found in {pretrained_model_path}") | |
# load the motion module weights | |
if motion_module_path.exists() and motion_module_path.is_file(): | |
if motion_module_path.suffix.lower() in [".pth", ".pt", ".ckpt"]: | |
print( | |
f"Load motion module params from {motion_module_path}") | |
motion_state_dict = torch.load( | |
motion_module_path, map_location="cpu", weights_only=True | |
) | |
elif motion_module_path.suffix.lower() == ".safetensors": | |
motion_state_dict = load_file(motion_module_path, device="cpu") | |
else: | |
raise RuntimeError( | |
f"unknown file format for motion module weights: {motion_module_path.suffix}" | |
) | |
if mm_zero_proj_out: | |
logger.info( | |
"Zero initialize proj_out layers in motion module...") | |
new_motion_state_dict = OrderedDict() | |
for k in motion_state_dict: | |
if "proj_out" in k: | |
continue | |
new_motion_state_dict[k] = motion_state_dict[k] | |
motion_state_dict = new_motion_state_dict | |
# merge the state dicts | |
state_dict.update(motion_state_dict) | |
model_state_dict = model.state_dict() | |
for k in state_dict: | |
if k in model_state_dict: | |
if state_dict[k].shape != model_state_dict[k].shape: | |
state_dict[k] = model_state_dict[k] | |
# load the weights into the model | |
m, u = model.load_state_dict(state_dict, strict=False) | |
logger.debug( | |
f"### missing keys: {len(m)}; \n### unexpected keys: {len(u)};") | |
params = [ | |
p.numel() if "temporal" in n else 0 for n, p in model.named_parameters() | |
] | |
logger.info(f"Loaded {sum(params) / 1e6}M-parameter motion module") | |
return model | |