import torch import torchvision from torch import nn def create_effnetb2_model(seed: int=42 ,num_classes: int=3): weights = torchvision.models.EfficientNet_B2_Weights.DEFAULT effnet_transforms = weights.transforms() model = torchvision.models.efficientnet_b2(weights=weights) for param in model.parameters(): param.requires_grad = False torch.manual_seed(seed) model.classifier = nn.Sequential( nn.Dropout(p=0.3 ,inplace=True) , nn.Linear(in_features=1408 ,out_features=num_classes ,bias=True) ) return model ,effnet_transforms