Spaces:
Runtime error
Runtime error
import gradio as gr | |
import os | |
import torch | |
from model import create_effnetb2_model | |
from timeit import default_timer as timer | |
from typing import Tuple ,Dict | |
effnetb2 ,effnetb2_transforms = create_effnetb2_model() | |
effnetb2.load_state_dict(torch.load( | |
f="09_pretrained_effnetb2.pth" , | |
map_location=torch.device('cpu') | |
) | |
) | |
class_name = ['pizza' ,'steak' ,'sushi'] | |
def predict(img) -> Tuple[Dict ,float]: | |
start_time = timer() | |
img = effnetb2_transforms(img).unsqueeze(dim=0) | |
effnetb2.eval() | |
with torch.inference_mode(): | |
logit = effnetb2(img) | |
pred_probs = torch.softmax(logit ,dim=1) | |
pred_labels_probs = {class_name[i] : float(pred_probs[0][i]) for i in range(len(class_name))} | |
pred_time = round(timer() - start_time ,5) | |
return pred_labels_probs ,pred_time | |
title = "FoodVision Mini ππ₯©π£" | |
description = "An EfficientNetB2 feature extractor computer vision model to classify images of food as pizza, steak or sushi." | |
article = "Created at [09. PyTorch Model Deployment](https://www.learnpytorch.io/09_pytorch_model_deployment/)." | |
example_list = [["examples/" + example] for example in os.listdir("examples")] | |
demo = gr.Interface(fn=predict ,inputs=gr.Image(type='pil') , | |
outputs=[gr.Label(num_top_classes=3 ,label='Predictions') , | |
gr.Number(label='Prediction time(s)')] , | |
examples=example_list , | |
title=title , | |
description=description , | |
article=article | |
) | |
demo.launch() | |