Foodvision / app.py
EngMohamed2023's picture
Update app.py
11ec2ce
import gradio as gr
import os
import torch
from model import create_effnetb2_model
from timeit import default_timer as timer
from typing import Tuple ,Dict
effnetb2 ,effnetb2_transforms = create_effnetb2_model()
effnetb2.load_state_dict(torch.load(
f="09_pretrained_effnetb2.pth" ,
map_location=torch.device('cpu')
)
)
class_name = ['pizza' ,'steak' ,'sushi']
def predict(img) -> Tuple[Dict ,float]:
start_time = timer()
img = effnetb2_transforms(img).unsqueeze(dim=0)
effnetb2.eval()
with torch.inference_mode():
logit = effnetb2(img)
pred_probs = torch.softmax(logit ,dim=1)
pred_labels_probs = {class_name[i] : float(pred_probs[0][i]) for i in range(len(class_name))}
pred_time = round(timer() - start_time ,5)
return pred_labels_probs ,pred_time
title = "FoodVision Mini πŸ•πŸ₯©πŸ£"
description = "An EfficientNetB2 feature extractor computer vision model to classify images of food as pizza, steak or sushi."
article = "Created at [09. PyTorch Model Deployment](https://www.learnpytorch.io/09_pytorch_model_deployment/)."
example_list = [["examples/" + example] for example in os.listdir("examples")]
demo = gr.Interface(fn=predict ,inputs=gr.Image(type='pil') ,
outputs=[gr.Label(num_top_classes=3 ,label='Predictions') ,
gr.Number(label='Prediction time(s)')] ,
examples=example_list ,
title=title ,
description=description ,
article=article
)
demo.launch()