Foodvision / model.py
EngMohamed2023's picture
Upload model.py
3ef65f1
raw
history blame
572 Bytes
import torch
import torchvision
from torch import nn
def create_effnetb2_model(seed: int=42 ,num_classes: int=3):
weights = torchvision.models.EfficientNet_B2_Weights.DEFAULT
effnet_transforms = weights.transforms()
model = torchvision.models.efficientnet_b2(weights=weights)
for param in model.parameters():
param.requires_grad = False
torch.manual_seed(seed)
model.classifier = nn.Sequential(
nn.Dropout(p=0.3 ,inplace=True) ,
nn.Linear(in_features=1408 ,out_features=num_classes ,bias=True)
)
return model ,effnet_transforms