File size: 9,452 Bytes
a858bb2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7252814
a858bb2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c7c3842
 
 
 
a858bb2
 
 
 
 
 
 
 
 
 
 
c7c3842
 
 
 
 
a858bb2
 
c7c3842
a858bb2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f9fea1
c9d717a
5c44631
159c62f
 
 
 
a858bb2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f9fea1
a858bb2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f9fea1
a858bb2
c7c3842
a858bb2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88b38e5
a858bb2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c7c3842
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
import gradio as gr
import numpy as np
import mlxu
import os
import re
import torch

from io import BytesIO
from natsort import natsorted
from PIL import Image

from inference import LocalInferenceModel

FLAGS, _ = mlxu.define_flags_with_default(
    host='0.0.0.0',
    port=5000,
    dtype='float16',
    checkpoint='Emma02/LVM_ckpts',
    torch_devices='',
    context_frames=16,
)

def natural_sort_key(s):
    return [int(text) if text.isdigit() else text.lower() for text in re.split('([0-9]+)', s)]

def load_example_image_groups(directory):
    example_groups = {}
    for subdir in os.listdir(directory):
        subdir_path = os.path.join(directory, subdir)
        if os.path.isdir(subdir_path):
            example_groups[subdir] = []
            images = [f for f in os.listdir(subdir_path) if f.lower().endswith(('.png', '.jpg', '.jpeg'))]
            images = natsorted(images, key=natural_sort_key)
            for filename in images:
                img = Image.open(os.path.join(subdir_path, filename))
                example_groups[subdir].append(img)
    return example_groups

def main(_):
    assert FLAGS.checkpoint != ''

    model = LocalInferenceModel(
        checkpoint=FLAGS.checkpoint,
        torch_device=torch.device("cuda"),
        dtype=FLAGS.dtype,
        context_frames=FLAGS.context_frames,
        use_lock=False,
    )

    checkerboard_r1 = np.concatenate([np.zeros((8, 8, 3)), np.ones((8, 8, 3)), np.zeros((8, 8, 3))], axis=1)
    checkerboard_r2 = np.concatenate([np.ones((8, 8, 3)), np.zeros((8, 8, 3)), np.ones((8, 8, 3))], axis=1)
    checkerboard = np.concatenate([checkerboard_r1, checkerboard_r2] * 16, axis=0).astype(np.float32)

    def generate_images(input_images, n_new_frames, n_candidates, temperature=1.0, top_p=0.9):
        assert len(input_images) > 0
        input_images = [
            np.array(img.convert('RGB').resize((256, 256)), dtype=np.float32) / 255.0
            for img in input_images
        ]
        input_images = np.stack(input_images, axis=0)
        output_images = model([input_images], n_new_frames, n_candidates, temperature, top_p)[0]

        generated_images = []
        for candidate in output_images:
            concatenated_image = []
            for i, img in enumerate(candidate):
                concatenated_image.append(img)
                if i < len(candidate) - 1:
                    concatenated_image.append(checkerboard)
            generated_images.append(
                Image.fromarray(
                    (np.concatenate(concatenated_image, axis=1) * 255).astype(np.uint8)
                )
            )

        return generated_images

    with gr.Blocks(css="""
        .small-button {
            padding: 5px 10px;
            min-width: 80px;
        }
        .large-gallery img {
            width: 100%;
            height: auto;
            max-height: 150px;
        }
    """) as demo:
        with gr.Column():
            image_list = gr.State([])
            gr.Markdown('# LVM Demo')
            gr.Markdown('This is the demo of CVPR 2024 paper: Sequential Modeling Enables Scalable Learning for Large Vision Models. For more information about this paper please check the [website](https://yutongbai.com/lvm.html).')
            gr.Markdown(f'Serving model: [{FLAGS.checkpoint}](https://huggingface.co/{FLAGS.checkpoint})')
            
            gr.Markdown('**There are mainly two visual prompting: sequential prompting and analogy prompting.**')
            gr.Markdown('**For analogy prompting: describe the task with few-shot examples, which is pairs of (x, y) inputs where x is the input image and y the "annotated" image. And add one query image in the end. Download the few-shot examples dataset at [this link](https://livejohnshopkins-my.sharepoint.com/:f:/g/personal/ybai20_jh_edu/Ei0xiLdFFqJPnwAlFWar29EBUAvB0O3CVaJykZl-f11KDQ?e=Bx9SXZ), and you can simply change the query image in the end for testing.**')
            gr.Markdown('**For sequential prompting, input a sequence of continuous frames and let the model generate the next one. Please refer to the default examples below.**')
            gr.Markdown('## Inputs')
            with gr.Row():
                upload_drag = gr.File(
                    type='binary',
                    file_types=['image'],
                    file_count='multiple',
                )
                with gr.Column():
                    gen_length_slider = gr.Slider(
                        label='Generation length',
                        minimum=1,
                        maximum=32,
                        value=1,
                        step=1,
                        interactive=True,
                    )
                    n_candidates_slider = gr.Slider(
                        label='Number of candidates',
                        minimum=1,
                        maximum=10,
                        value=4,
                        step=1,
                        interactive=True,
                    )
                    temp_slider = gr.Slider(
                        label='Temperature',
                        minimum=0,
                        maximum=2.0,
                        value=1.0,
                        interactive=True,
                    )
                    top_p_slider = gr.Slider(
                        label='Top p',
                        minimum=0,
                        maximum=1.0,
                        value=0.9,
                        interactive=True,
                    )
                    clear_btn = gr.Button(
                        value='Clear',
                        elem_classes=['small-button'],
                    )
                    generate_btn = gr.Button(
                        value='Generate',
                        interactive=False,
                        elem_classes=['small-button'],
                    )
            input_gallery = gr.Gallery(
                columns=7,
                rows=1,
                object_fit='scale-down',
                label="Input image sequence"
            )
            gr.Markdown('## Outputs (multi candidates)')
            output_gallery = gr.Gallery(
                columns=4,
                object_fit='scale-down',
                label="Output image"
            )

        def upload_image_fn(files, images):
            for file in files:
                images.append(Image.open(BytesIO(file)))

            return {
                upload_drag: None,
                image_list: images,
                input_gallery: images,
                generate_btn: gr.update(interactive=True),
            }

        def clear_fn():
            return {
                image_list: [],
                input_gallery: [],
                generate_btn: gr.update(interactive=False),
                output_gallery: [],
            }

        def disable_generate_btn():
            return {
                generate_btn: gr.update(interactive=False),
            }

        def generate_fn(images, n_candidates, gen_length, temperature, top_p):
            new_images = generate_images(
                images,
                gen_length,
                n_candidates=n_candidates,
                temperature=temperature,
                top_p=top_p,
            )
            return {
                output_gallery: new_images,
                generate_btn: gr.update(interactive=True),
            }

        upload_drag.upload(
            upload_image_fn,
            inputs=[upload_drag, image_list],
            outputs=[upload_drag, image_list, input_gallery, generate_btn],
        )
        clear_btn.click(
            clear_fn,
            inputs=None,
            outputs=[image_list, input_gallery, generate_btn, output_gallery],
        )
        generate_btn.click(
            disable_generate_btn,
            inputs=None,
            outputs=[generate_btn],
        ).then(
            generate_fn,
            inputs=[image_list, n_candidates_slider, gen_length_slider, temp_slider, top_p_slider],
            outputs=[output_gallery, generate_btn],
        )

        example_groups = load_example_image_groups('prompts')

        def add_image_group_fn(group_name, images):
            new_images = images + example_groups[group_name]
            return {
                image_list: new_images,
                input_gallery: new_images,
                generate_btn: gr.update(interactive=True),
            }

        gr.Markdown('## Default examples')
        for group_name, group_images in example_groups.items():
            with gr.Row():
                with gr.Column(scale=3):
                    add_button = gr.Button(value=f'Add {group_name}', elem_classes=['small-button'])
                with gr.Column(scale=7):
                    group_gallery = gr.Gallery(
                        value=[Image.fromarray(np.array(img)) for img in group_images],
                        columns=5,
                        rows=1,
                        object_fit='scale-down',
                        label=group_name,
                        elem_classes=['large-gallery'],
                    )

                add_button.click(
                    add_image_group_fn,
                    inputs=[gr.State(group_name), image_list],
                    outputs=[image_list, input_gallery, generate_btn],
                )

    demo.launch()

if __name__ == "__main__":
    mlxu.run(main)