Spaces:
Build error
Build error
yangxinsci1993
commited on
Commit
·
6e4fc64
1
Parent(s):
c160098
edit interface
Browse files- .DS_Store +0 -0
- app.py +147 -21
- bin/reframe +32 -0
- pred.txt +1 -0
- test.py +34 -0
- test.sh +9 -0
- test/1.gold.txt +1 -0
- test/1.txt +1 -0
- test/10.gold.txt +1 -0
- test/10.txt +1 -0
- test/2.gold.txt +1 -0
- test/2.txt +1 -0
- test/3.gold.txt +1 -0
- test/3.txt +1 -0
- test/4.gold.txt +1 -0
- test/4.txt +1 -0
- test/5.gold.txt +1 -0
- test/5.txt +1 -0
- test/6.gold.txt +1 -0
- test/6.txt +1 -0
- test/7.gold.txt +1 -0
- test/7.txt +1 -0
- test/8.gold.txt +1 -0
- test/8.txt +1 -0
- test/9.gold.txt +1 -0
- test/9.txt +1 -0
- test/test.sh +0 -0
.DS_Store
CHANGED
Binary files a/.DS_Store and b/.DS_Store differ
|
|
app.py
CHANGED
@@ -1,8 +1,10 @@
|
|
1 |
-
import torch
|
2 |
from transformers import pipeline
|
3 |
from transformers import AutoModelForSeq2SeqLM
|
4 |
from transformers import AutoTokenizer
|
5 |
from textblob import TextBlob
|
|
|
|
|
|
|
6 |
|
7 |
# Load trained model
|
8 |
model = AutoModelForSeq2SeqLM.from_pretrained("output/reframer")
|
@@ -10,32 +12,156 @@ tokenizer = AutoTokenizer.from_pretrained("output/reframer")
|
|
10 |
reframer = pipeline('summarization', model=model, tokenizer=tokenizer)
|
11 |
|
12 |
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
sonar = Sonar()
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
|
|
|
|
30 |
|
|
|
|
|
|
|
31 |
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
with gr.Blocks() as demo:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
text = gr.Textbox(label="Original Text")
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
["thankfulness", "neutralizing", "optimism", "growth", "impermanence", "self_affirmation"], label="Strategy to use?"
|
37 |
)
|
38 |
-
|
|
|
39 |
greet_btn = gr.Button("Reframe")
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
demo.launch()
|
|
|
|
|
1 |
from transformers import pipeline
|
2 |
from transformers import AutoModelForSeq2SeqLM
|
3 |
from transformers import AutoTokenizer
|
4 |
from textblob import TextBlob
|
5 |
+
from hatesonar import Sonar
|
6 |
+
import gradio as gr
|
7 |
+
import torch
|
8 |
|
9 |
# Load trained model
|
10 |
model = AutoModelForSeq2SeqLM.from_pretrained("output/reframer")
|
|
|
12 |
reframer = pipeline('summarization', model=model, tokenizer=tokenizer)
|
13 |
|
14 |
|
15 |
+
CHAR_LENGTH_LOWER_BOUND = 15 # The minimum character length threshold for the input text
|
16 |
+
CHAR_LENGTH_HIGHER_BOUND = 150 # The maximum character length threshold for the input text
|
17 |
+
SENTIMENT_THRESHOLD = 0.2 # The maximum Textblob sentiment score for the input text
|
18 |
+
OFFENSIVENESS_CONFIDENCE_THRESHOLD = 0.8 # The threshold for the confidence score of a text being offensive
|
19 |
+
|
20 |
+
LENGTH_ERROR = "The input text is too long or too short. Please try again by inputing text with moderate length."
|
21 |
+
SENTIMENT_ERROR = "The input text is too positive. Please try again by inputing text with negative sentiment."
|
22 |
+
OFFENSIVE_ERROR = "The input text is offensive. Please try again by inputing non-offensive text."
|
23 |
+
|
24 |
+
CACHE = [] # A list storing the most recent 5 reframing history
|
25 |
+
MAX_STORE = 5 # The maximum number of history user would like to store
|
26 |
+
|
27 |
+
BEST_N = 3 # The number of best decodes user would like to seee
|
28 |
+
|
29 |
+
|
30 |
+
def input_error_message(error_type):
|
31 |
+
# type: (str) -> str
|
32 |
+
"""Generate an input error message from error type."""
|
33 |
+
return "[Error]: Invalid Input. " + error_type
|
34 |
+
|
35 |
+
def update_cache(cache, new_record):
|
36 |
+
# type: List[List[str, str, str]] -> List[List[str, str, str]]
|
37 |
+
"""Update the cache to store the most recent five reframing histories."""
|
38 |
+
cache.append(new_record)
|
39 |
+
if len(cache) > MAX_STORE:
|
40 |
+
cache = cache[1:]
|
41 |
+
return cache
|
42 |
+
|
43 |
+
def reframe(input_text, strategy):
|
44 |
+
# type: (str, str) -> str
|
45 |
+
"""Reframe the input text with a specified strategy.
|
46 |
+
|
47 |
+
The strategy will be concetenated to the input text and passed to a finetuned BART model.
|
48 |
+
|
49 |
+
The reframed positive text will be returned.
|
50 |
+
"""
|
51 |
+
text_with_strategy = input_text + "Strategy: ['" + strategy + "']"
|
52 |
+
|
53 |
+
# Input Control
|
54 |
+
# The input text cannot be too short to ensure it has substantial content to be reframed. It also cannot be too long to ensure the text has a focused idea.
|
55 |
+
if len(input_text) < CHAR_LENGTH_LOWER_BOUND or len(input_text) > CHAR_LENGTH_HIGHER_BOUND:
|
56 |
+
return input_error_message(LENGTH_ERROR)
|
57 |
+
# The input text cannot be too positive to ensure the text can be positively reframed.
|
58 |
+
if TextBlob(input_text).sentiment.polarity > 0.2:
|
59 |
+
return input_error_message(SENTIMENT_ERROR)
|
60 |
+
# The input text cannot be offensive.
|
61 |
sonar = Sonar()
|
62 |
+
# sonar.ping(input_text) outputs a dictionary and the second score under the key classes is the confidence for the input text being offensive language
|
63 |
+
if sonar.ping(input_text)['classes'][1]['confidence'] > OFFENSIVENESS_CONFIDENCE_THRESHOLD:
|
64 |
+
return input_error_message(OFFENSIVE_ERROR)
|
65 |
+
|
66 |
+
# Reframing
|
67 |
+
# reframer pipeline outputs a list containing one dictionary where the value for 'summary_text' is the reframed text output
|
68 |
+
reframed_text = reframer(text_with_strategy)[0]['summary_text']
|
69 |
|
70 |
+
# Update cache
|
71 |
+
global CACHE
|
72 |
+
CACHE = update_cache(CACHE, [input_text, strategy, reframed_text])
|
73 |
|
74 |
+
return reframed_text
|
75 |
+
|
76 |
+
|
77 |
+
def show_reframe_change(input_text, strategy):
|
78 |
+
# type: (str, str) -> List[Tuple[str, str]]
|
79 |
+
"""Compare the addition and deletion of characters in input_text to form reframed_text.
|
80 |
+
|
81 |
+
The returned output is a list of tuples with two elements, the first element being the character in reframed text and the second element being the action performed with respect to the input text.
|
82 |
+
"""
|
83 |
+
reframed_text = reframe(input_text, strategy)
|
84 |
+
from difflib import Differ
|
85 |
+
d = Differ()
|
86 |
+
return [
|
87 |
+
(token[2:], token[0] if token[0] != " " else None)
|
88 |
+
for token in d.compare(input_text, reframed_text)
|
89 |
+
]
|
90 |
+
|
91 |
+
def show_n_best_decodes(input_text, strategy):
|
92 |
+
# type: (str, str) -> str
|
93 |
+
prompt = [input_text + "Strategy: ['" + strategy + "']"]
|
94 |
+
n_best_decodes = model.generate(torch.tensor(tokenizer(prompt, padding=True)['input_ids']),
|
95 |
+
do_sample=True,
|
96 |
+
num_return_sequences=BEST_N
|
97 |
+
)
|
98 |
+
best_n_result = ""
|
99 |
+
for i in range(len(n_best_decodes)):
|
100 |
+
best_n_result += str(i+1) + " " + tokenizer.decode(n_best_decodes[i], skip_special_tokens=True)
|
101 |
+
if i < BEST_N - 1:
|
102 |
+
best_n_result += "\n"
|
103 |
+
return best_n_result
|
104 |
+
|
105 |
+
def show_history(cache):
|
106 |
+
# type: List[List[str, str, str]] -> str
|
107 |
+
history = ""
|
108 |
+
for i in cache:
|
109 |
+
input_text, strategy, reframed_text = i
|
110 |
+
history += "Input text: " + input_text + " Strategy: " + strategy + " -> Reframed text: " + reframed_text + "\n"
|
111 |
+
return gr.Textbox.update(value=history, visible=True)
|
112 |
+
|
113 |
+
|
114 |
+
# Build Gradio interface
|
115 |
with gr.Blocks() as demo:
|
116 |
+
# Instruction
|
117 |
+
gr.Markdown(
|
118 |
+
'''
|
119 |
+
# Positive Reframing
|
120 |
+
Start inputing negative texts to see how you can see the same event from a positive angle.
|
121 |
+
''')
|
122 |
+
|
123 |
+
# Input text to be reframed
|
124 |
text = gr.Textbox(label="Original Text")
|
125 |
+
|
126 |
+
# Input strategy for the reframing
|
127 |
+
gr.Markdown(
|
128 |
+
'''
|
129 |
+
Choose one of the six strategies to carry out reframing: \n
|
130 |
+
**Growth Mindset:** Viewing a challenging event as an opportunity for the author specifically to grow or improve themselves. \n
|
131 |
+
**Impermanence:** Saying bad things don’t last forever, will get better soon, and/or that others have experienced similar struggles. \n
|
132 |
+
**Neutralizing:** Replacing a negative word with a neutral word. For example, “This was a terrible day” becomes “This was a long day.” \n
|
133 |
+
**Optimism:** Focusing on things about the situation itself, in that moment, that are good (not just forecasting a better future). \n
|
134 |
+
**Self-affirmation:** Talking about what strengths the author already has, or the values they admire, like love, courage, perseverance, etc. \n
|
135 |
+
**Thankfulness:** Expressing thankfulness or gratitude with key words like appreciate, glad that, thankful for, good thing, etc.
|
136 |
+
''')
|
137 |
+
strategy = gr.Radio(
|
138 |
["thankfulness", "neutralizing", "optimism", "growth", "impermanence", "self_affirmation"], label="Strategy to use?"
|
139 |
)
|
140 |
+
|
141 |
+
# Trigger button for reframing
|
142 |
greet_btn = gr.Button("Reframe")
|
143 |
+
best_output = gr.HighlightedText(
|
144 |
+
label="Diff",
|
145 |
+
combine_adjacent=True,
|
146 |
+
).style(color_map={"+": "green", "-": "red"})
|
147 |
+
greet_btn.click(fn=show_reframe_change, inputs=[text, strategy], outputs=best_output)
|
148 |
+
|
149 |
+
# Trigger button for showing n best reframings
|
150 |
+
greet_btn = gr.Button("Show Best {n} Results".format(n=BEST_N))
|
151 |
+
n_best_output = gr.Textbox(interactive=False)
|
152 |
+
greet_btn.click(fn=show_n_best_decodes, inputs=[text, strategy], outputs=n_best_output)
|
153 |
+
|
154 |
+
# Default examples of text and strategy pairs for user to have a quick start
|
155 |
+
gr.Markdown("## Examples")
|
156 |
+
gr.Examples(
|
157 |
+
[["I have a lot of homework to do today.", "self_affirmation"], ["This has been the longest and most stressful week of my life!", "optimism"], ["So stressed about the midterms next week.", "thankfulness"]],
|
158 |
+
[text, strategy], output, show_reframe_change, cache_examples=False, run_on_click=False
|
159 |
+
)
|
160 |
+
|
161 |
+
# Link to paper and Github repo
|
162 |
+
gr.Markdown(
|
163 |
+
'''
|
164 |
+
For more details: You can read our [paper](https://arxiv.org/abs/2204.02952) or access our [code](https://github.com/SALT-NLP/positive-frames).
|
165 |
+
''')
|
166 |
+
|
167 |
demo.launch()
|
bin/reframe
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
import argparse
|
4 |
+
from transformers import pipeline
|
5 |
+
from transformers import AutoModelForSeq2SeqLM
|
6 |
+
from transformers import AutoTokenizer
|
7 |
+
|
8 |
+
def get_args():
|
9 |
+
""" args from input
|
10 |
+
"""
|
11 |
+
parser = argparse.ArgumentParser(description='HSIC-Bottleneck research')
|
12 |
+
|
13 |
+
parser.add_argument('-ipt', '--input', required=True,
|
14 |
+
type=str, help='input path')
|
15 |
+
|
16 |
+
args = parser.parse_args()
|
17 |
+
|
18 |
+
return args
|
19 |
+
|
20 |
+
def main():
|
21 |
+
|
22 |
+
args = get_args()
|
23 |
+
|
24 |
+
input_file = args.input
|
25 |
+
|
26 |
+
with open(input_file, 'r') as file:
|
27 |
+
data = file.read().rstrip()
|
28 |
+
print(data)
|
29 |
+
|
30 |
+
|
31 |
+
if __name__ == '__main__':
|
32 |
+
main()
|
pred.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
I have a lot of homework to do today, but I know I can finish it.
|
test.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import pipeline
|
2 |
+
from transformers import AutoModelForSeq2SeqLM
|
3 |
+
from transformers import AutoTokenizer
|
4 |
+
import argparse
|
5 |
+
|
6 |
+
# Load trained model
|
7 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("output/reframer")
|
8 |
+
tokenizer = AutoTokenizer.from_pretrained("output/reframer")
|
9 |
+
reframer = pipeline('summarization', model=model, tokenizer=tokenizer)
|
10 |
+
|
11 |
+
def get_args():
|
12 |
+
""" args from input
|
13 |
+
"""
|
14 |
+
parser = argparse.ArgumentParser(description='HSIC-Bottleneck research')
|
15 |
+
|
16 |
+
parser.add_argument('-ipt', '--input', required=True,
|
17 |
+
type=str, help='input path')
|
18 |
+
|
19 |
+
args = parser.parse_args()
|
20 |
+
|
21 |
+
return args
|
22 |
+
|
23 |
+
def main():
|
24 |
+
|
25 |
+
args = get_args()
|
26 |
+
|
27 |
+
input_file = args.input
|
28 |
+
|
29 |
+
with open(input_file, 'r') as file:
|
30 |
+
data = file.read().rstrip()
|
31 |
+
print(reframer(data)[0]['summary_text'])
|
32 |
+
|
33 |
+
if __name__ == '__main__':
|
34 |
+
main()
|
test.sh
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
|
3 |
+
for n in 1 2 3 4 5 6 7 8 9 10
|
4 |
+
do
|
5 |
+
echo '------------------------------------------------------------'
|
6 |
+
echo $n
|
7 |
+
echo "test/$n.txt"
|
8 |
+
python test.py --input="test/$n.txt" | diff - test/$n.gold.txt
|
9 |
+
done
|
test/1.gold.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
I have a lot of homework to do today, but I know I can finish .
|
test/1.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
I have a lot of homework to do today. Strategy: ['self_affirmation']
|
test/10.gold.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
The restaurant is not a good one.
|
test/10.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
The restaurant is horrible. Strategy: ['neutralizing']
|
test/2.gold.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
I have a lot of homework to do today, but I'm thankful that I have the time to do it.
|
test/2.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
I have a lot of homework to do today. Strategy: ['thankfulness']
|
test/3.gold.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
I have a lot of homework to do today, but it will be over soon.
|
test/3.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
I have a lot of homework to do today. Strategy: ['impermanence']
|
test/4.gold.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
So stressed about the midterm next week. But I know I can do it.
|
test/4.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
So stressed about the midterm next week. Strategy: ['self_affirmation']
|
test/5.gold.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
So stressed about the midterm next week. Hope I do well.
|
test/5.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
So stressed about the midterm next week. Strategy: ['optimism']
|
test/6.gold.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
I'm stressed about the midterm next week, but I know it will be over soon.
|
test/6.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
So stressed about the midterm next week. Strategy: ['impermanence']
|
test/7.gold.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
I failed my math quiz, but I know I can do better next time.
|
test/7.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
I failed my math quiz I am such a loser. Strategy: ['self_affirmation']
|
test/8.gold.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
I failed my math quiz I am such a loser. I need to study harder next time.
|
test/8.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
I failed my math quiz I am such a loser. Strategy: ['growth']
|
test/9.gold.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
I failed my math quiz, but I'm sure I'll pass next time.
|
test/9.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
I failed my math quiz I am such a loser. Strategy: ['optimism']
|
test/test.sh
ADDED
File without changes
|