|
import re |
|
import string |
|
import numpy as np |
|
import torch |
|
import nltk |
|
import pymorphy2 |
|
|
|
from nltk.corpus import stopwords |
|
nltk.download('stopwords') |
|
stop_words = set(stopwords.words('russian')) |
|
morph = pymorphy2.MorphAnalyzer() |
|
|
|
def data_preprocessing_hard(text: str) -> str: |
|
text = text.lower() |
|
text = re.sub('<.*?>', '', text) |
|
text = re.sub(r'[^а-яА-Я\s]', '', text) |
|
text = ''.join([c for c in text if c not in string.punctuation]) |
|
text = ' '.join([word for word in text.split() if word not in stop_words]) |
|
|
|
text = ' '.join([morph.parse(word)[0].normal_form for word in text.split()]) |
|
|
|
return text |
|
|
|
def data_preprocessing(text: str) -> str: |
|
"""preprocessing string: lowercase, removing html-tags, punctuation and stopwords |
|
|
|
Args: |
|
text (str): input string for preprocessing |
|
|
|
Returns: |
|
str: preprocessed string |
|
""" |
|
|
|
text = text.lower() |
|
text = re.sub('<.*?>', '', text) |
|
text = ''.join([c for c in text if c not in string.punctuation]) |
|
text = [word for word in text.split() if word not in stop_words] |
|
text = ' '.join(text) |
|
return text |
|
|
|
def get_words_by_freq(sorted_words: list, n: int = 10) -> list: |
|
return list(filter(lambda x: x[1] > n, sorted_words)) |
|
|
|
def padding(review_int: list, seq_len: int) -> np.array: |
|
"""Make left-sided padding for input list of tokens |
|
|
|
Args: |
|
review_int (list): input list of tokens |
|
seq_len (int): max length of sequence, it len(review_int[i]) > seq_len it will be trimmed, else it will be padded by zeros |
|
|
|
Returns: |
|
np.array: padded sequences |
|
""" |
|
features = np.zeros((len(review_int), seq_len), dtype = int) |
|
for i, review in enumerate(review_int): |
|
if len(review) <= seq_len: |
|
zeros = list(np.zeros(seq_len - len(review))) |
|
new = zeros + review |
|
else: |
|
new = review[: seq_len] |
|
features[i, :] = np.array(new) |
|
|
|
return features |
|
|
|
def preprocess_single_string( |
|
input_string: str, |
|
seq_len: int, |
|
vocab_to_int: dict, |
|
verbose : bool = False |
|
) -> torch.tensor: |
|
"""Function for all preprocessing steps on a single string |
|
|
|
Args: |
|
input_string (str): input single string for preprocessing |
|
seq_len (int): max length of sequence, it len(review_int[i]) > seq_len it will be trimmed, else it will be padded by zeros |
|
vocab_to_int (dict, optional): word corpus {'word' : int index}. Defaults to vocab_to_int. |
|
|
|
Returns: |
|
list: preprocessed string |
|
""" |
|
|
|
preprocessed_string = data_preprocessing(input_string) |
|
result_list = [] |
|
for word in preprocessed_string.split(): |
|
try: |
|
result_list.append(vocab_to_int[word]) |
|
except KeyError as e: |
|
if verbose: |
|
print(f'{e}: not in dictionary!') |
|
pass |
|
result_padded = padding([result_list], seq_len)[0] |
|
|
|
return torch.tensor(result_padded) |
|
|
|
def predict_review(model, review_text: str, net_config, vocab_to_int) -> torch.tensor: |
|
sample = preprocess_single_string(review_text, net_config.seq_len, vocab_to_int) |
|
probability_lstm = model(sample.unsqueeze(0)).to(net_config.device).sigmoid() |
|
return probability_lstm.item() |