|
import torch |
|
import torch.nn as nn |
|
|
|
class LSTMClassifier(nn.Module): |
|
def __init__(self, rnn_conf) -> None: |
|
super().__init__() |
|
|
|
self.embedding_dim = rnn_conf.embedding_dim |
|
self.hidden_size = rnn_conf.hidden_size |
|
self.bidirectional = rnn_conf.bidirectional |
|
self.n_layers = rnn_conf.n_layers |
|
|
|
self.embedding = nn.Embedding(rnn_conf.vocab_size, self.embedding_dim) |
|
self.lstm = nn.LSTM( |
|
input_size = self.embedding_dim, |
|
hidden_size = self.hidden_size, |
|
bidirectional = self.bidirectional, |
|
batch_first = True, |
|
num_layers = self.n_layers |
|
) |
|
self.bidirect_factor = 2 if self.bidirectional else 1 |
|
self.clf = nn.Sequential( |
|
nn.Linear(self.hidden_size * self.bidirect_factor, 32), |
|
nn.Tanh(), |
|
nn.Dropout(), |
|
nn.Linear(32, 1) |
|
) |
|
|
|
def model_description(self): |
|
direction = 'bidirect' if self.bidirectional else 'onedirect' |
|
return f'lstm_{direction}_{self.n_layers}' |
|
|
|
|
|
def forward(self, x: torch.Tensor): |
|
embeddings = self.embedding(x) |
|
out, _ = self.lstm(embeddings) |
|
out = out[:, -1, :] |
|
out = self.clf(out.squeeze()) |
|
return out |
|
|