Merge branch 'feature/add_steps_display' into feature/graph_recommandation
Browse files- app.py +177 -187
- sandbox/20240310 - CQA - Semantic Routing 1.ipynb +0 -0
- style.css +18 -2
- test.json +0 -0
app.py
CHANGED
@@ -15,6 +15,8 @@ import time
|
|
15 |
import re
|
16 |
import json
|
17 |
|
|
|
|
|
18 |
# from gradio_modal import Modal
|
19 |
|
20 |
from io import BytesIO
|
@@ -121,10 +123,8 @@ async def chat(query,history,audience,sources,reports,current_graphs):
|
|
121 |
reports = []
|
122 |
|
123 |
inputs = {"user_input": query,"audience": audience_prompt,"sources":sources}
|
124 |
-
|
125 |
-
|
126 |
-
# result = rag_chain.stream(inputs)
|
127 |
-
|
128 |
# path_reformulation = "/logs/reformulation/final_output"
|
129 |
# path_keywords = "/logs/keywords/final_output"
|
130 |
# path_retriever = "/logs/find_documents/final_output"
|
@@ -146,130 +146,166 @@ async def chat(query,history,audience,sources,reports,current_graphs):
|
|
146 |
"transform_query":("🔄️ Thinking step by step to answer the question",True),
|
147 |
"retrieve_documents":("🔄️ Searching in the knowledge base",False),
|
148 |
}
|
149 |
-
|
|
|
|
|
150 |
try:
|
151 |
async for event in result:
|
152 |
|
153 |
-
if event["event"] == "on_chat_model_stream" and event["metadata"]["langgraph_node"] in ["answer_rag", "answer_rag_no_docs", "answer_chitchat", "answer_ai_impact"]:
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
168 |
|
169 |
-
elif docs_used is True and event["name"] == "retrieve_documents" and event["event"] == "on_chain_end":
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
# elif event["name"] == "retrieve_documents" and event["event"] == "on_chain_start":
|
182 |
-
# print(event)
|
183 |
-
# questions = event["data"]["input"]["questions"]
|
184 |
-
# questions = "\n".join([f"{i+1}. {q['question']} ({q['source']})" for i,q in enumerate(questions)])
|
185 |
-
# answer_yet = "🔄️ Searching in the knowledge base\n{questions}"
|
186 |
-
# history[-1] = (query,answer_yet)
|
187 |
-
|
188 |
-
elif event["name"] in ["retrieve_graphs", "retrieve_graphs_ai"] and event["event"] == "on_chain_end":
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
|
201 |
-
|
202 |
-
|
203 |
|
204 |
-
|
205 |
-
|
206 |
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
|
219 |
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
|
235 |
-
except Exception as e:
|
236 |
-
print(f"Error getting graphs: {e}")
|
237 |
-
|
238 |
-
for event_name,(event_description,display_output) in steps_display.items():
|
239 |
-
if event["name"] == event_name:
|
240 |
-
if event["event"] == "on_chain_start":
|
241 |
-
# answer_yet = f"<p><span class='loader'></span>{event_description}</p>"
|
242 |
-
# answer_yet = make_toolbox(event_description, "", checked = False)
|
243 |
-
answer_yet = event_description
|
244 |
-
|
245 |
-
history[-1] = (query,answer_yet)
|
246 |
-
# elif event["event"] == "on_chain_end":
|
247 |
-
# answer_yet = ""
|
248 |
-
# history[-1] = (query,answer_yet)
|
249 |
-
# if display_output:
|
250 |
-
# print(event["data"]["output"])
|
251 |
-
|
252 |
-
# if op['path'] == path_reformulation: # reforulated question
|
253 |
-
# try:
|
254 |
-
# output_language = op['value']["language"] # str
|
255 |
-
# output_query = op["value"]["question"]
|
256 |
# except Exception as e:
|
257 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
258 |
|
259 |
-
# if op["path"] == path_keywords:
|
260 |
-
# try:
|
261 |
-
# output_keywords = op['value']["keywords"] # str
|
262 |
-
# output_keywords = " AND ".join(output_keywords)
|
263 |
-
# except Exception as e:
|
264 |
-
# pass
|
265 |
|
266 |
|
267 |
|
268 |
-
history = [tuple(x) for x in history]
|
269 |
-
yield history,docs_html,output_query,output_language,gallery,current_graphs #,output_query,output_keywords
|
270 |
|
271 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
272 |
except Exception as e:
|
|
|
273 |
raise gr.Error(f"{e}")
|
274 |
|
275 |
|
@@ -330,23 +366,24 @@ async def chat(query,history,audience,sources,reports,current_graphs):
|
|
330 |
history[-1] = (history[-1][0],answer_yet)
|
331 |
history = [tuple(x) for x in history]
|
332 |
|
333 |
-
|
334 |
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
|
340 |
-
|
341 |
|
342 |
|
343 |
|
344 |
-
# else:
|
345 |
-
# docs_string = "No relevant passages found in the climate science reports (IPCC and IPBES)"
|
346 |
-
# complete_response = "**No relevant passages found in the climate science reports (IPCC and IPBES), you may want to ask a more specific question (specifying your question on climate issues).**"
|
347 |
-
# messages.append({"role": "assistant", "content": complete_response})
|
348 |
-
# gradio_format = make_pairs([a["content"] for a in messages[1:]])
|
349 |
-
# yield gradio_format, messages, docs_string
|
|
|
350 |
|
351 |
|
352 |
def save_feedback(feed: str, user_id):
|
@@ -392,56 +429,6 @@ papers_cols_widths = {
|
|
392 |
papers_cols = list(papers_cols_widths.keys())
|
393 |
papers_cols_widths = list(papers_cols_widths.values())
|
394 |
|
395 |
-
# async def find_papers(query, keywords,after):
|
396 |
-
|
397 |
-
# summary = ""
|
398 |
-
|
399 |
-
# df_works = oa.search(keywords,after = after)
|
400 |
-
# df_works = df_works.dropna(subset=["abstract"])
|
401 |
-
# df_works = oa.rerank(query,df_works,reranker)
|
402 |
-
# df_works = df_works.sort_values("rerank_score",ascending=False)
|
403 |
-
# G = oa.make_network(df_works)
|
404 |
-
|
405 |
-
# height = "750px"
|
406 |
-
# network = oa.show_network(G,color_by = "rerank_score",notebook=False,height = height)
|
407 |
-
# network_html = network.generate_html()
|
408 |
-
|
409 |
-
# network_html = network_html.replace("'", "\"")
|
410 |
-
# css_to_inject = "<style>#mynetwork { border: none !important; } .card { border: none !important; }</style>"
|
411 |
-
# network_html = network_html + css_to_inject
|
412 |
-
|
413 |
-
|
414 |
-
# network_html = f"""<iframe style="width: 100%; height: {height};margin:0 auto" name="result" allow="midi; geolocation; microphone; camera;
|
415 |
-
# display-capture; encrypted-media;" sandbox="allow-modals allow-forms
|
416 |
-
# allow-scripts allow-same-origin allow-popups
|
417 |
-
# allow-top-navigation-by-user-activation allow-downloads" allowfullscreen=""
|
418 |
-
# allowpaymentrequest="" frameborder="0" srcdoc='{network_html}'></iframe>"""
|
419 |
-
|
420 |
-
|
421 |
-
# docs = df_works["content"].head(15).tolist()
|
422 |
-
|
423 |
-
# df_works = df_works.reset_index(drop = True).reset_index().rename(columns = {"index":"doc"})
|
424 |
-
# df_works["doc"] = df_works["doc"] + 1
|
425 |
-
# df_works = df_works[papers_cols]
|
426 |
-
|
427 |
-
# yield df_works,network_html,summary
|
428 |
-
|
429 |
-
# chain = make_rag_papers_chain(llm)
|
430 |
-
# result = chain.astream_log({"question": query,"docs": docs,"language":"English"})
|
431 |
-
# path_answer = "/logs/StrOutputParser/streamed_output/-"
|
432 |
-
|
433 |
-
# async for op in result:
|
434 |
-
|
435 |
-
# op = op.ops[0]
|
436 |
-
|
437 |
-
# if op['path'] == path_answer: # reforulated question
|
438 |
-
# new_token = op['value'] # str
|
439 |
-
# summary += new_token
|
440 |
-
# else:
|
441 |
-
# continue
|
442 |
-
# yield df_works,network_html,summary
|
443 |
-
|
444 |
-
|
445 |
|
446 |
# --------------------------------------------------------------------
|
447 |
# Gradio
|
@@ -478,23 +465,28 @@ def save_graph(saved_graphs_state, embedding, category):
|
|
478 |
return saved_graphs_state, gr.Button("Graph Saved")
|
479 |
|
480 |
|
481 |
-
with gr.Blocks(title="Climate Q&A", css="style.css", theme=theme,elem_id = "main-component") as demo:
|
482 |
-
|
483 |
|
484 |
-
|
485 |
-
|
486 |
-
|
|
|
487 |
|
488 |
with gr.Tab("ClimateQ&A"):
|
489 |
|
490 |
with gr.Row(elem_id="chatbot-row"):
|
491 |
with gr.Column(scale=2):
|
492 |
-
state = gr.State([system_template])
|
493 |
chatbot = gr.Chatbot(
|
494 |
-
value=[(
|
495 |
-
|
|
|
|
|
|
|
|
|
496 |
avatar_images = (None,"https://i.ibb.co/YNyd5W2/logo4.png"),
|
497 |
-
)
|
498 |
|
499 |
# bot.like(vote,None,None)
|
500 |
|
@@ -502,8 +494,7 @@ with gr.Blocks(title="Climate Q&A", css="style.css", theme=theme,elem_id = "main
|
|
502 |
|
503 |
with gr.Row(elem_id = "input-message"):
|
504 |
textbox=gr.Textbox(placeholder="Ask me anything here!",show_label=False,scale=7,lines = 1,interactive = True,elem_id="input-textbox")
|
505 |
-
|
506 |
-
|
507 |
|
508 |
with gr.Column(scale=1, variant="panel",elem_id = "right-panel"):
|
509 |
|
@@ -685,8 +676,9 @@ with gr.Blocks(title="Climate Q&A", css="style.css", theme=theme,elem_id = "main
|
|
685 |
|
686 |
|
687 |
def start_chat(query,history):
|
688 |
-
history = history + [(query,None)]
|
689 |
-
history = [tuple(x) for x in history]
|
|
|
690 |
return (gr.update(interactive = False),gr.update(selected=1),history)
|
691 |
|
692 |
def finish_chat():
|
@@ -722,8 +714,6 @@ with gr.Blocks(title="Climate Q&A", css="style.css", theme=theme,elem_id = "main
|
|
722 |
|
723 |
dropdown_samples.change(change_sample_questions,dropdown_samples,samples)
|
724 |
|
725 |
-
# query_papers.submit(generate_keywords,[query_papers], [keywords_papers])
|
726 |
-
# search_papers.click(find_papers,[query_papers,keywords_papers,after], [papers_dataframe,citations_network,papers_summary])
|
727 |
|
728 |
demo.queue()
|
729 |
|
|
|
15 |
import re
|
16 |
import json
|
17 |
|
18 |
+
from gradio import ChatMessage
|
19 |
+
|
20 |
# from gradio_modal import Modal
|
21 |
|
22 |
from io import BytesIO
|
|
|
123 |
reports = []
|
124 |
|
125 |
inputs = {"user_input": query,"audience": audience_prompt,"sources":sources}
|
126 |
+
result = agent.astream_events(inputs,version = "v1")
|
127 |
+
|
|
|
|
|
128 |
# path_reformulation = "/logs/reformulation/final_output"
|
129 |
# path_keywords = "/logs/keywords/final_output"
|
130 |
# path_retriever = "/logs/find_documents/final_output"
|
|
|
146 |
"transform_query":("🔄️ Thinking step by step to answer the question",True),
|
147 |
"retrieve_documents":("🔄️ Searching in the knowledge base",False),
|
148 |
}
|
149 |
+
|
150 |
+
used_documents = []
|
151 |
+
answer_message_content = ""
|
152 |
try:
|
153 |
async for event in result:
|
154 |
|
155 |
+
# if event["event"] == "on_chat_model_stream" and event["metadata"]["langgraph_node"] in ["answer_rag", "answer_rag_no_docs", "answer_chitchat", "answer_ai_impact"]:
|
156 |
+
# if start_streaming == False:
|
157 |
+
# start_streaming = True
|
158 |
+
# history[-1] = (query,"")
|
159 |
+
if "langgraph_node" in event["metadata"]:
|
160 |
+
node = event["metadata"]["langgraph_node"]
|
161 |
+
|
162 |
+
if event["event"] == "on_chain_end" and event["name"] == "retrieve_documents" :# when documents are retrieved
|
163 |
+
try:
|
164 |
+
docs = event["data"]["output"]["documents"]
|
165 |
+
docs_html = []
|
166 |
+
for i, d in enumerate(docs, 1):
|
167 |
+
docs_html.append(make_html_source(d, i))
|
168 |
+
|
169 |
+
used_documents = used_documents + [d.metadata["name"] for d in docs]
|
170 |
+
history[-1].content = "Adding sources :\n\n - " + "\n - ".join(np.unique(used_documents))
|
171 |
+
|
172 |
+
docs_html = "".join(docs_html)
|
173 |
+
|
174 |
+
except Exception as e:
|
175 |
+
print(f"Error getting documents: {e}")
|
176 |
+
print(event)
|
177 |
+
|
178 |
+
elif event["name"] in steps_display.keys() and event["event"] == "on_chain_start": #display steps
|
179 |
+
event_description,display_output = steps_display[node]
|
180 |
+
if not hasattr(history[-1], 'metadata') or history[-1].metadata["title"] != event_description: # if a new step begins
|
181 |
+
history.append(ChatMessage(role="assistant", content = "", metadata={'title' :event_description}))
|
182 |
+
|
183 |
+
elif event["name"] != "transform_query" and event["event"] == "on_chat_model_stream" and node in ["answer_rag", "answer_search"]:# if streaming answer
|
184 |
+
if start_streaming == False:
|
185 |
+
start_streaming = True
|
186 |
+
history.append(ChatMessage(role="assistant", content = ""))
|
187 |
+
answer_message_content += event["data"]["chunk"].content
|
188 |
+
answer_message_content = parse_output_llm_with_sources(answer_message_content)
|
189 |
+
history[-1] = ChatMessage(role="assistant", content = answer_message_content)
|
190 |
+
# history.append(ChatMessage(role="assistant", content = new_message_content))
|
191 |
+
|
192 |
+
# if docs_used is True and event["metadata"]["langgraph_node"] in ["answer_rag_no_docs", "answer_chitchat", "answer_ai_impact"]:
|
193 |
+
# docs_used = False
|
194 |
|
195 |
+
# elif docs_used is True and event["name"] == "retrieve_documents" and event["event"] == "on_chain_end":
|
196 |
+
# try:
|
197 |
+
# docs = event["data"]["output"]["documents"]
|
198 |
+
# docs_html = []
|
199 |
+
# for i, d in enumerate(docs, 1):
|
200 |
+
# docs_html.append(make_html_source(d, i))
|
201 |
+
# docs_html = "".join(docs_html)
|
202 |
+
|
203 |
+
# except Exception as e:
|
204 |
+
# print(f"Error getting documents: {e}")
|
205 |
+
# print(event)
|
206 |
+
|
207 |
+
# # elif event["name"] == "retrieve_documents" and event["event"] == "on_chain_start":
|
208 |
+
# # print(event)
|
209 |
+
# # questions = event["data"]["input"]["questions"]
|
210 |
+
# # questions = "\n".join([f"{i+1}. {q['question']} ({q['source']})" for i,q in enumerate(questions)])
|
211 |
+
# # answer_yet = "🔄️ Searching in the knowledge base\n{questions}"
|
212 |
+
# # history[-1] = (query,answer_yet)
|
213 |
+
|
214 |
+
# elif event["name"] in ["retrieve_graphs", "retrieve_graphs_ai"] and event["event"] == "on_chain_end":
|
215 |
+
# try:
|
216 |
+
# recommended_content = event["data"]["output"]["recommended_content"]
|
217 |
+
# # graphs = [
|
218 |
+
# # {
|
219 |
+
# # "embedding": x.metadata["returned_content"],
|
220 |
+
# # "metadata": {
|
221 |
+
# # "source": x.metadata["source"],
|
222 |
+
# # "category": x.metadata["category"]
|
223 |
+
# # }
|
224 |
+
# # } for x in recommended_content if x.metadata["source"] == "OWID"
|
225 |
+
# # ]
|
226 |
|
227 |
+
# unique_graphs = []
|
228 |
+
# seen_embeddings = set()
|
229 |
|
230 |
+
# for x in recommended_content:
|
231 |
+
# embedding = x.metadata["returned_content"]
|
232 |
|
233 |
+
# # Check if the embedding has already been seen
|
234 |
+
# if embedding not in seen_embeddings:
|
235 |
+
# unique_graphs.append({
|
236 |
+
# "embedding": embedding,
|
237 |
+
# "metadata": {
|
238 |
+
# "source": x.metadata["source"],
|
239 |
+
# "category": x.metadata["category"]
|
240 |
+
# }
|
241 |
+
# })
|
242 |
+
# # Add the embedding to the seen set
|
243 |
+
# seen_embeddings.add(embedding)
|
244 |
|
245 |
|
246 |
+
# categories = {}
|
247 |
+
# for graph in unique_graphs:
|
248 |
+
# category = graph['metadata']['category']
|
249 |
+
# if category not in categories:
|
250 |
+
# categories[category] = []
|
251 |
+
# categories[category].append(graph['embedding'])
|
252 |
+
|
253 |
+
# # graphs_html = ""
|
254 |
+
# for category, embeddings in categories.items():
|
255 |
+
# # graphs_html += f"<h3>{category}</h3>"
|
256 |
+
# # current_graphs.append(f"<h3>{category}</h3>")
|
257 |
+
# for embedding in embeddings:
|
258 |
+
# current_graphs.append([embedding, category])
|
259 |
+
# # graphs_html += f"<div>{embedding}</div>"
|
260 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
261 |
# except Exception as e:
|
262 |
+
# print(f"Error getting graphs: {e}")
|
263 |
+
|
264 |
+
# for event_name,(event_description,display_output) in steps_display.items():
|
265 |
+
# if event["name"] == event_name:
|
266 |
+
# if event["event"] == "on_chain_start":
|
267 |
+
# # answer_yet = f"<p><span class='loader'></span>{event_description}</p>"
|
268 |
+
# # answer_yet = make_toolbox(event_description, "", checked = False)
|
269 |
+
# answer_yet = event_description
|
270 |
+
|
271 |
+
# history[-1] = (query,answer_yet)
|
272 |
+
# # elif event["event"] == "on_chain_end":
|
273 |
+
# # answer_yet = ""
|
274 |
+
# # history[-1] = (query,answer_yet)
|
275 |
+
# # if display_output:
|
276 |
+
# # print(event["data"]["output"])
|
277 |
+
|
278 |
+
# # if op['path'] == path_reformulation: # reforulated question
|
279 |
+
# # try:
|
280 |
+
# # output_language = op['value']["language"] # str
|
281 |
+
# # output_query = op["value"]["question"]
|
282 |
+
# # except Exception as e:
|
283 |
+
# # raise gr.Error(f"ClimateQ&A Error: {e} - The error has been noted, try another question and if the error remains, you can contact us :)")
|
284 |
|
285 |
+
# # if op["path"] == path_keywords:
|
286 |
+
# # try:
|
287 |
+
# # output_keywords = op['value']["keywords"] # str
|
288 |
+
# # output_keywords = " AND ".join(output_keywords)
|
289 |
+
# # except Exception as e:
|
290 |
+
# # pass
|
291 |
|
292 |
|
293 |
|
294 |
+
# history = [tuple(x) for x in history]
|
295 |
+
# yield history,docs_html,output_query,output_language,gallery,current_graphs #,output_query,output_keywords
|
296 |
|
297 |
|
298 |
+
if event["name"] == "transform_query" and event["event"] =="on_chain_end":
|
299 |
+
if hasattr(history[-1],"content"):
|
300 |
+
history[-1].content += "Decompose question into sub-questions: \n\n - " + "\n - ".join([q["question"] for q in event["data"]["output"]["remaining_questions"]])
|
301 |
+
|
302 |
+
if event["name"] == "categorize_intent" and event["event"] == "on_chain_start":
|
303 |
+
print("X")
|
304 |
+
|
305 |
+
yield history,docs_html,output_query,output_language,gallery #,output_query,output_keywords
|
306 |
+
|
307 |
except Exception as e:
|
308 |
+
print(event, "has failed")
|
309 |
raise gr.Error(f"{e}")
|
310 |
|
311 |
|
|
|
366 |
history[-1] = (history[-1][0],answer_yet)
|
367 |
history = [tuple(x) for x in history]
|
368 |
|
369 |
+
# print(f"\n\nImages:\n{gallery}")
|
370 |
|
371 |
+
# # gallery = [x.metadata["image_path"] for x in docs if (len(x.metadata["image_path"]) > 0 and "IAS" in x.metadata["image_path"])]
|
372 |
+
# # if len(gallery) > 0:
|
373 |
+
# # gallery = list(set("|".join(gallery).split("|")))
|
374 |
+
# # gallery = [get_image_from_azure_blob_storage(x) for x in gallery]
|
375 |
|
376 |
+
# yield history,docs_html,output_query,output_language,gallery,current_graphs #,output_query,output_keywords
|
377 |
|
378 |
|
379 |
|
380 |
+
# # else:
|
381 |
+
# # docs_string = "No relevant passages found in the climate science reports (IPCC and IPBES)"
|
382 |
+
# # complete_response = "**No relevant passages found in the climate science reports (IPCC and IPBES), you may want to ask a more specific question (specifying your question on climate issues).**"
|
383 |
+
# # messages.append({"role": "assistant", "content": complete_response})
|
384 |
+
# # gradio_format = make_pairs([a["content"] for a in messages[1:]])
|
385 |
+
# # yield gradio_format, messages, docs_string
|
386 |
+
yield history,docs_html,output_query,output_language,gallery#,output_query,output_keywords
|
387 |
|
388 |
|
389 |
def save_feedback(feed: str, user_id):
|
|
|
429 |
papers_cols = list(papers_cols_widths.keys())
|
430 |
papers_cols_widths = list(papers_cols_widths.values())
|
431 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
432 |
|
433 |
# --------------------------------------------------------------------
|
434 |
# Gradio
|
|
|
465 |
return saved_graphs_state, gr.Button("Graph Saved")
|
466 |
|
467 |
|
468 |
+
# with gr.Blocks(title="Climate Q&A", css="style.css", theme=theme,elem_id = "main-component") as demo:
|
469 |
+
# user_id_state = gr.State([user_id])
|
470 |
|
471 |
+
# chat_completed_state = gr.State(0)
|
472 |
+
# current_graphs = gr.State([])
|
473 |
+
# saved_graphs = gr.State({})
|
474 |
+
with gr.Blocks(title="Climate Q&A", css_paths=os.getcwd()+ "/style.css", theme=theme,elem_id = "main-component") as demo:
|
475 |
|
476 |
with gr.Tab("ClimateQ&A"):
|
477 |
|
478 |
with gr.Row(elem_id="chatbot-row"):
|
479 |
with gr.Column(scale=2):
|
480 |
+
# state = gr.State([system_template])
|
481 |
chatbot = gr.Chatbot(
|
482 |
+
value = [ChatMessage(role="assistant", content=init_prompt)],
|
483 |
+
type = "messages",
|
484 |
+
show_copy_button=True,
|
485 |
+
show_label = False,
|
486 |
+
elem_id="chatbot",
|
487 |
+
layout = "panel",
|
488 |
avatar_images = (None,"https://i.ibb.co/YNyd5W2/logo4.png"),
|
489 |
+
)
|
490 |
|
491 |
# bot.like(vote,None,None)
|
492 |
|
|
|
494 |
|
495 |
with gr.Row(elem_id = "input-message"):
|
496 |
textbox=gr.Textbox(placeholder="Ask me anything here!",show_label=False,scale=7,lines = 1,interactive = True,elem_id="input-textbox")
|
497 |
+
|
|
|
498 |
|
499 |
with gr.Column(scale=1, variant="panel",elem_id = "right-panel"):
|
500 |
|
|
|
676 |
|
677 |
|
678 |
def start_chat(query,history):
|
679 |
+
# history = history + [(query,None)]
|
680 |
+
# history = [tuple(x) for x in history]
|
681 |
+
history = history + [ChatMessage(role="user", content=query)]
|
682 |
return (gr.update(interactive = False),gr.update(selected=1),history)
|
683 |
|
684 |
def finish_chat():
|
|
|
714 |
|
715 |
dropdown_samples.change(change_sample_questions,dropdown_samples,samples)
|
716 |
|
|
|
|
|
717 |
|
718 |
demo.queue()
|
719 |
|
sandbox/20240310 - CQA - Semantic Routing 1.ipynb
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
style.css
CHANGED
@@ -2,6 +2,14 @@
|
|
2 |
/* :root {
|
3 |
--user-image: url('https://ih1.redbubble.net/image.4776899543.6215/st,small,507x507-pad,600x600,f8f8f8.jpg');
|
4 |
} */
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
.warning-box {
|
7 |
background-color: #fff3cd;
|
@@ -57,6 +65,7 @@ body.dark .tip-box * {
|
|
57 |
|
58 |
.message{
|
59 |
font-size:14px !important;
|
|
|
60 |
}
|
61 |
|
62 |
|
@@ -65,6 +74,10 @@ a {
|
|
65 |
color: inherit;
|
66 |
}
|
67 |
|
|
|
|
|
|
|
|
|
68 |
.card {
|
69 |
background-color: white;
|
70 |
border-radius: 10px;
|
@@ -426,7 +439,7 @@ span.chatbot > p > img{
|
|
426 |
|
427 |
.loader {
|
428 |
border: 1px solid #d0d0d0 !important; /* Light grey background */
|
429 |
-
border-top: 1px solid #
|
430 |
border-right: 1px solid #3498db !important; /* Blue color */
|
431 |
border-radius: 50%;
|
432 |
width: 20px;
|
@@ -492,4 +505,7 @@ div#tab-saved-graphs {
|
|
492 |
max-height: 50vh; /* Reduce height for smaller screens */
|
493 |
overflow-y: auto;
|
494 |
}
|
495 |
-
}
|
|
|
|
|
|
|
|
2 |
/* :root {
|
3 |
--user-image: url('https://ih1.redbubble.net/image.4776899543.6215/st,small,507x507-pad,600x600,f8f8f8.jpg');
|
4 |
} */
|
5 |
+
.avatar-container.svelte-1x5p6hu:not(.thumbnail-item) img {
|
6 |
+
width: 100%;
|
7 |
+
height: 100%;
|
8 |
+
object-fit: cover;
|
9 |
+
border-radius: 50%;
|
10 |
+
padding: 0px;
|
11 |
+
margin: 0px;
|
12 |
+
}
|
13 |
|
14 |
.warning-box {
|
15 |
background-color: #fff3cd;
|
|
|
65 |
|
66 |
.message{
|
67 |
font-size:14px !important;
|
68 |
+
|
69 |
}
|
70 |
|
71 |
|
|
|
74 |
color: inherit;
|
75 |
}
|
76 |
|
77 |
+
.doc-ref sup{
|
78 |
+
color:#dc2626!important;
|
79 |
+
/* margin-right:1px; */
|
80 |
+
}
|
81 |
.card {
|
82 |
background-color: white;
|
83 |
border-radius: 10px;
|
|
|
439 |
|
440 |
.loader {
|
441 |
border: 1px solid #d0d0d0 !important; /* Light grey background */
|
442 |
+
border-top: 1px solid #db3434 !important; /* Blue color */
|
443 |
border-right: 1px solid #3498db !important; /* Blue color */
|
444 |
border-radius: 50%;
|
445 |
width: 20px;
|
|
|
505 |
max-height: 50vh; /* Reduce height for smaller screens */
|
506 |
overflow-y: auto;
|
507 |
}
|
508 |
+
}
|
509 |
+
.message-buttons-left.panel.message-buttons.with-avatar {
|
510 |
+
display: none;
|
511 |
+
}
|
test.json
ADDED
File without changes
|