TheoLvs commited on
Commit
6e7a56a
·
1 Parent(s): cc93b6c

Updated embeddings

Browse files
Files changed (2) hide show
  1. app.py +5 -6
  2. climateqa/engine/embeddings.py +1 -0
app.py CHANGED
@@ -13,12 +13,6 @@ from azure.storage.fileshare import ShareServiceClient
13
  import re
14
  import json
15
 
16
-
17
- # Langchain
18
- from langchain.embeddings import HuggingFaceEmbeddings
19
- from langchain.schema import AIMessage, HumanMessage
20
- from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
21
-
22
  # ClimateQ&A imports
23
  from climateqa.engine.llm import get_llm
24
  # from climateqa.chains import load_qa_chain_with_docs,load_qa_chain_with_text
@@ -46,6 +40,8 @@ theme = gr.themes.Base(
46
  font=[gr.themes.GoogleFont("Poppins"), "ui-sans-serif", "system-ui", "sans-serif"],
47
  )
48
 
 
 
49
 
50
 
51
  init_prompt = ""
@@ -91,7 +87,10 @@ def parse_output_llm_with_sources(output):
91
 
92
 
93
  # Create embeddings function and LLM
 
94
  embeddings_function = get_embeddings_function()
 
 
95
 
96
  # Create vectorstore and retriever
97
  vectorstore = get_pinecone_vectorstore(embeddings_function)
 
13
  import re
14
  import json
15
 
 
 
 
 
 
 
16
  # ClimateQ&A imports
17
  from climateqa.engine.llm import get_llm
18
  # from climateqa.chains import load_qa_chain_with_docs,load_qa_chain_with_text
 
40
  font=[gr.themes.GoogleFont("Poppins"), "ui-sans-serif", "system-ui", "sans-serif"],
41
  )
42
 
43
+ print("1")
44
+
45
 
46
 
47
  init_prompt = ""
 
87
 
88
 
89
  # Create embeddings function and LLM
90
+ print("1")
91
  embeddings_function = get_embeddings_function()
92
+ print("1")
93
+
94
 
95
  # Create vectorstore and retriever
96
  vectorstore = get_pinecone_vectorstore(embeddings_function)
climateqa/engine/embeddings.py CHANGED
@@ -11,6 +11,7 @@ def get_embeddings_function(version = "v1.2"):
11
 
12
  model_name = "BAAI/bge-base-en-v1.5"
13
  encode_kwargs = {'normalize_embeddings': True} # set True to compute cosine similarity
 
14
  embeddings_function = HuggingFaceBgeEmbeddings(
15
  model_name=model_name,
16
  encode_kwargs=encode_kwargs,
 
11
 
12
  model_name = "BAAI/bge-base-en-v1.5"
13
  encode_kwargs = {'normalize_embeddings': True} # set True to compute cosine similarity
14
+ print("Loading embeddings model: ", model_name)
15
  embeddings_function = HuggingFaceBgeEmbeddings(
16
  model_name=model_name,
17
  encode_kwargs=encode_kwargs,