Avo-k commited on
Commit
669d503
·
1 Parent(s): a4595fc

var outside of func

Browse files
Files changed (1) hide show
  1. app.py +7 -16
app.py CHANGED
@@ -1,31 +1,28 @@
1
  import gradio as gr
2
  from haystack.document_stores import FAISSDocumentStore
3
  from haystack.nodes import EmbeddingRetriever
4
- import numpy as np
5
  import openai
6
  import os
7
- from datasets import load_dataset
8
- from datasets import Dataset
9
- import time
10
  from utils import (
11
- is_climate_change_related,
12
  make_pairs,
13
  set_openai_api_key,
14
  get_random_string,
15
  )
16
 
17
- system_template = {"role": os.environ["role"], "content": os.environ["content"]}
18
-
19
-
20
  only_ipcc_document_store = FAISSDocumentStore.load(
21
  index_path="./documents/climate_gpt_only_giec.faiss",
22
  config_path="./documents/climate_gpt_only_giec.json",
23
  )
24
-
25
  document_store = FAISSDocumentStore.load(
26
  index_path="./documents/climate_gpt.faiss",
27
  config_path="./documents/climate_gpt.json",
28
  )
 
 
 
 
 
29
 
30
 
31
  def gen_conv(query: str, history=[system_template], report_type="All available", threshold=0.56):
@@ -40,14 +37,8 @@ def gen_conv(query: str, history=[system_template], report_type="All available",
40
  _type_: _description_
41
  """
42
 
43
- dense = EmbeddingRetriever(
44
- document_store=document_store if report_type == "All available" else only_ipcc_document_store,
45
- embedding_model="sentence-transformers/multi-qa-mpnet-base-dot-v1",
46
- model_format="sentence_transformers",
47
- )
48
-
49
  messages = history + [{"role": "user", "content": query}]
50
- docs = dense.retrieve(query=query, top_k=10)
51
  sources = "\n\n".join(
52
  f"doc {i}: {d.meta['file_name']} page {d.meta['page_number']}\n{d.content}"
53
  for i, d in enumerate(docs, 1)
 
1
  import gradio as gr
2
  from haystack.document_stores import FAISSDocumentStore
3
  from haystack.nodes import EmbeddingRetriever
 
4
  import openai
5
  import os
 
 
 
6
  from utils import (
 
7
  make_pairs,
8
  set_openai_api_key,
9
  get_random_string,
10
  )
11
 
12
+ system_template = {"role": "system", "content": os.environ["content"]}
 
 
13
  only_ipcc_document_store = FAISSDocumentStore.load(
14
  index_path="./documents/climate_gpt_only_giec.faiss",
15
  config_path="./documents/climate_gpt_only_giec.json",
16
  )
 
17
  document_store = FAISSDocumentStore.load(
18
  index_path="./documents/climate_gpt.faiss",
19
  config_path="./documents/climate_gpt.json",
20
  )
21
+ retriever = EmbeddingRetriever(
22
+ document_store=document_store if report_type == "All available" else only_ipcc_document_store,
23
+ embedding_model="sentence-transformers/multi-qa-mpnet-base-dot-v1",
24
+ model_format="sentence_transformers",
25
+ )
26
 
27
 
28
  def gen_conv(query: str, history=[system_template], report_type="All available", threshold=0.56):
 
37
  _type_: _description_
38
  """
39
 
 
 
 
 
 
 
40
  messages = history + [{"role": "user", "content": query}]
41
+ docs = retriever.retrieve(query=query, top_k=10)
42
  sources = "\n\n".join(
43
  f"doc {i}: {d.meta['file_name']} page {d.meta['page_number']}\n{d.content}"
44
  for i, d in enumerate(docs, 1)