import gradio as gr
from ctransformers import AutoModelForCausalLM, AutoConfig, Config #import for GGUF/GGML models
import datetime
modelfile="TinyLlama/TinyLlama-1.1B-Chat-v0.6"
i_temperature = 0.30
i_max_new_tokens=1100
i_repetitionpenalty = 1.2
i_contextlength=12048
logfile = 'TinyLlama.1B.txt'
print("loading model...")
stt = datetime.datetime.now()
conf = AutoConfig(Config(temperature=i_temperature,
repetition_penalty=i_repetitionpenalty,
batch_size=64,
max_new_tokens=i_max_new_tokens,
context_length=i_contextlength))
llm = AutoModelForCausalLM.from_pretrained(modelfile,
model_type="llama",
config=conf)
dt = datetime.datetime.now() - stt
print(f"Model loaded in {dt}")
def writehistory(text):
with open(logfile, 'a', encoding='utf-8') as f:
f.write(text)
f.write('\n')
f.close()
with gr.Blocks(theme='ParityError/Interstellar') as demo:
# TITLE SECTION
with gr.Row():
with gr.Column(scale=12):
gr.HTML("
"
+ "š¦ TinyLlama 1.1B š 4K context window
")
gr.Markdown("""
**Currently Running**: [TinyLlama/TinyLlama-1.1B-Chat-v0.6](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v0.6) **Chat History Log File**: *TinyLlama.1B.txt*
- **Base Model**: TinyLlama/TinyLlama-1.1B-Chat-v0.6, Fine tuned on OpenOrca GPT4 subset for 1 epoch, Using CHATML format.
- **License**: Apache 2.0, following the TinyLlama base model.
The model output is not censored and the authors do not endorse the opinions in the generated content. Use at your own risk.
""")
gr.Image(value='imgs/TinyLlama_logo.png', width=70)
# chat and parameters settings
with gr.Row():
with gr.Column(scale=4):
chatbot = gr.Chatbot(height = 350, show_copy_button=True, avatar_images = ["imgs/user_logo.png","imgs/TinyLlama_logo.png"])
with gr.Row():
with gr.Column(scale=14):
msg = gr.Textbox(show_label=False, placeholder="Enter text", lines=2)
submitBtn = gr.Button("\nš¬ Send\n", size="lg", variant="primary", min_width=140)
with gr.Column(min_width=50, scale=1):
with gr.Tab(label="Parameter Setting"):
gr.Markdown("# Parameters")
top_p = gr.Slider(minimum=-0,
maximum=1.0,
value=0.95,
step=0.05,
interactive=True,
label="Top-p")
temperature = gr.Slider(minimum=0.1,
maximum=1.0,
value=0.30,
step=0.01,
interactive=True,
label="Temperature")
max_length_tokens = gr.Slider(minimum=0,
maximum=4096,
value=1060,
step=4,
interactive=True,
label="Max Generation Tokens")
rep_pen = gr.Slider(minimum=0,
maximum=5,
value=1.2,
step=0.05,
interactive=True,
label="Repetition Penalty")
clear = gr.Button("šļø Clear All Messages", variant='secondary')
def user(user_message, history):
writehistory(f"USER: {user_message}")
return "", history + [[user_message, None]]
def bot(history, t, p, m, r):
SYSTEM_PROMPT = """<|im_start|>system
You are a helpful bot. Your answers are clear and concise.
<|im_end|>
"""
prompt = f"<|im_start|>system<|im_end|><|im_start|>user\n{history[-1][0]}<|im_end|>\n<|im_start|>assistant\n"
print(f"history lenght: {len(history)}")
if len(history) == 1:
print("this is the first round")
else:
print("here we should pass more conversations")
history[-1][1] = ""
for character in llm(prompt,
temperature = t,
top_p = p,
repetition_penalty = r,
max_new_tokens=m,
stop = ['<|im_end|>'],
stream = True):
history[-1][1] += character
yield history
writehistory(f"temperature: {t}, top_p: {p}, maxNewTokens: {m}, repetitionPenalty: {r}\n---\nBOT: {history}\n\n")
# Log in the terminal the messages
print(f"USER: {history[-1][0]}\n---\ntemperature: {t}, top_p: {p}, maxNewTokens: {m}, repetitionPenalty: {r}\n---\nBOT: {history[-1][1]}\n\n")
# Clicking the submitBtn will call the generation with Parameters in the slides
submitBtn.click(user, [msg, chatbot], [msg, chatbot], queue=False).then(bot, [chatbot,temperature,top_p,max_length_tokens,rep_pen], chatbot)
clear.click(lambda: None, None, chatbot, queue=False)
demo.queue() # required to yield the streams from the text generation
demo.launch(inbrowser=True, share=True)