import gradio as gr from ctransformers import AutoModelForCausalLM, AutoConfig, Config #import for GGUF/GGML models import datetime modelfile="TinyLlama/TinyLlama-1.1B-Chat-v0.6" i_temperature = 0.30 i_max_new_tokens=1100 i_repetitionpenalty = 1.2 i_contextlength=12048 logfile = 'TinyLlama.1B.txt' print("loading model...") stt = datetime.datetime.now() conf = AutoConfig(Config(temperature=i_temperature, repetition_penalty=i_repetitionpenalty, batch_size=64, max_new_tokens=i_max_new_tokens, context_length=i_contextlength)) llm = AutoModelForCausalLM.from_pretrained(modelfile, model_type="llama", config=conf) dt = datetime.datetime.now() - stt print(f"Model loaded in {dt}") def writehistory(text): with open(logfile, 'a', encoding='utf-8') as f: f.write(text) f.write('\n') f.close() with gr.Blocks(theme='ParityError/Interstellar') as demo: # TITLE SECTION with gr.Row(): with gr.Column(scale=12): gr.HTML("
" + "

šŸ¦™ TinyLlama 1.1B šŸ‹ 4K context window

") gr.Markdown(""" **Currently Running**: [TinyLlama/TinyLlama-1.1B-Chat-v0.6](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v0.6)        **Chat History Log File**: *TinyLlama.1B.txt* - **Base Model**: TinyLlama/TinyLlama-1.1B-Chat-v0.6, Fine tuned on OpenOrca GPT4 subset for 1 epoch, Using CHATML format. - **License**: Apache 2.0, following the TinyLlama base model. The model output is not censored and the authors do not endorse the opinions in the generated content. Use at your own risk. """) gr.Image(value='imgs/TinyLlama_logo.png', width=70) # chat and parameters settings with gr.Row(): with gr.Column(scale=4): chatbot = gr.Chatbot(height = 350, show_copy_button=True, avatar_images = ["imgs/user_logo.png","imgs/TinyLlama_logo.png"]) with gr.Row(): with gr.Column(scale=14): msg = gr.Textbox(show_label=False, placeholder="Enter text", lines=2) submitBtn = gr.Button("\nšŸ’¬ Send\n", size="lg", variant="primary", min_width=140) with gr.Column(min_width=50, scale=1): with gr.Tab(label="Parameter Setting"): gr.Markdown("# Parameters") top_p = gr.Slider(minimum=-0, maximum=1.0, value=0.95, step=0.05, interactive=True, label="Top-p") temperature = gr.Slider(minimum=0.1, maximum=1.0, value=0.30, step=0.01, interactive=True, label="Temperature") max_length_tokens = gr.Slider(minimum=0, maximum=4096, value=1060, step=4, interactive=True, label="Max Generation Tokens") rep_pen = gr.Slider(minimum=0, maximum=5, value=1.2, step=0.05, interactive=True, label="Repetition Penalty") clear = gr.Button("šŸ—‘ļø Clear All Messages", variant='secondary') def user(user_message, history): writehistory(f"USER: {user_message}") return "", history + [[user_message, None]] def bot(history, t, p, m, r): SYSTEM_PROMPT = """<|im_start|>system You are a helpful bot. Your answers are clear and concise. <|im_end|> """ prompt = f"<|im_start|>system<|im_end|><|im_start|>user\n{history[-1][0]}<|im_end|>\n<|im_start|>assistant\n" print(f"history lenght: {len(history)}") if len(history) == 1: print("this is the first round") else: print("here we should pass more conversations") history[-1][1] = "" for character in llm(prompt, temperature = t, top_p = p, repetition_penalty = r, max_new_tokens=m, stop = ['<|im_end|>'], stream = True): history[-1][1] += character yield history writehistory(f"temperature: {t}, top_p: {p}, maxNewTokens: {m}, repetitionPenalty: {r}\n---\nBOT: {history}\n\n") # Log in the terminal the messages print(f"USER: {history[-1][0]}\n---\ntemperature: {t}, top_p: {p}, maxNewTokens: {m}, repetitionPenalty: {r}\n---\nBOT: {history[-1][1]}\n\n") # Clicking the submitBtn will call the generation with Parameters in the slides submitBtn.click(user, [msg, chatbot], [msg, chatbot], queue=False).then(bot, [chatbot,temperature,top_p,max_length_tokens,rep_pen], chatbot) clear.click(lambda: None, None, chatbot, queue=False) demo.queue() # required to yield the streams from the text generation demo.launch(inbrowser=True, share=True)