Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import spaces | |
import gradio as gr | |
import random | |
import numpy as np | |
import torch | |
from torchvision.transforms.functional import center_crop | |
try: | |
# Try to install detectron2 from source. Needed for semseg plotting functionality. | |
os.system("python -m pip install 'git+https://github.com/facebookresearch/detectron2.git'") | |
except Exception as e: | |
print('detectron2 cannot be installed. Falling back to simple semseg visualization.') | |
print(e) | |
# We recommend running this demo on an A100 GPU | |
if torch.cuda.is_available(): | |
device = "cuda" | |
gpu_type = torch.cuda.get_device_name(torch.cuda.current_device()) | |
power_device = f"{gpu_type}" | |
torch.cuda.max_memory_allocated(device=device) | |
else: | |
device = "cpu" | |
power_device = "CPU" | |
os.system("pip uninstall -y xformers") # Only use xformers on GPU | |
from fourm.demo_4M_sampler import Demo4MSampler | |
from fourm.data.modality_transforms import RGBTransform | |
# The flag below controls whether to allow TF32 on matmul. This flag defaults to False in PyTorch 1.12 and later. | |
torch.backends.cuda.matmul.allow_tf32 = True | |
# The flag below controls whether to allow TF32 on cuDNN. This flag defaults to True. | |
torch.backends.cudnn.allow_tf32 = True | |
MAX_SEED = np.iinfo(np.int32).max | |
FM_MODEL_ID = 'EPFL-VILAB/4M-21_XL' | |
MODEL_NAME = FM_MODEL_ID.split('/')[1].replace('_', ' ') | |
# Human poses visualization is disabled, since it needs SMPL weights. To enable human pose prediction and rendering: | |
# 1) Install via `pip install timm yacs smplx pyrender pyopengl==3.1.4` | |
# You may need to follow the pyrender install instructions: https://pyrender.readthedocs.io/en/latest/install/index.html | |
# 2) Download SMPL data from https://smpl.is.tue.mpg.de/. See https://github.com/shubham-goel/4D-Humans/ for an example | |
# 3) Copy the required SMPL files (smpl_mean_params.npz, SMPL_to_J19.pkl, smpl/SMPL_NEUTRAL.pkl) to fourm/utils/hmr2_utils/data . | |
MANUAL_MODS_OVERRIDE = [ | |
'color_palette', 'tok_depth@224', 'tok_imagebind@224', 'sam_instance', 'tok_dinov2_global', | |
'tok_normal@224', 'tok_sam_edge@224', 'det', 'tok_canny_edge@224', 'tok_semseg@224', 'rgb@224', | |
'caption', 't5_caption', 'tok_imagebind_global', 'tok_rgb@224', 'tok_clip@224', 'metadata', 'tok_dinov2@224' | |
] | |
sampler = Demo4MSampler( | |
fm=FM_MODEL_ID, | |
fm_sr=None, | |
tok_human_poses=None, | |
tok_text='./text_tokenizer_4m_wordpiece_30k.json', | |
mods=MANUAL_MODS_OVERRIDE, | |
).to(device) | |
def img_from_path(img_path: str): | |
rgb_transform = RGBTransform(imagenet_default_mean_and_std=True) | |
img_pil = rgb_transform.load(img_path) | |
img_pil = rgb_transform.preprocess(img_pil) | |
img_pil = center_crop(img_pil, (min(img_pil.size), min(img_pil.size))).resize((224,224)) | |
img = rgb_transform.postprocess(img_pil).unsqueeze(0) | |
return img | |
def infer(img_path, seed=0, randomize_seed=False, target_modalities=None, top_p=0.8, top_k=0.0): | |
if randomize_seed: | |
seed = None | |
img = img_from_path(img_path).to(device) | |
preds = sampler({'rgb@224': img}, seed=seed, target_modalities=target_modalities, top_p=top_p, top_k=top_k) | |
return sampler.modalities_to_pil(preds, use_fixed_plotting_order=True, resize=512) | |
examples = [ | |
'examples/example_0.png', 'examples/example_1.png', 'examples/example_2.png', | |
'examples/example_3.png', 'examples/example_4.png', 'examples/example_5.png', | |
] | |
css=""" | |
#col-container { | |
margin: 0 auto; | |
max-width: 1500px; | |
} | |
#col-input-container { | |
margin: 0 auto; | |
max-width: 400px; | |
} | |
#run-button { | |
margin: 0 auto; | |
} | |
""" | |
with gr.Blocks(css=css, theme=gr.themes.Base()) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown(f""" | |
# 4M: Massively Multimodal Masked Modeling | |
""") | |
with gr.Row(): | |
with gr.Column(elem_id="col-input-container"): | |
gr.Markdown(f""" | |
*A framework for training any-to-any multimodal foundation models. Scalable. Open-sourced. Across tens of modalities and tasks.* | |
[`Website`](https://4m.epfl.ch) | [`GitHub`](https://github.com/apple/ml-4m) <br>[`4M Paper (NeurIPS'23)`](https://arxiv.org/abs/2312.06647) | [`4M-21 Paper (NeurIPS'24)`](https://arxiv.org/abs/2406.09406) | |
This demo predicts all modalities from a given RGB input, using [{FM_MODEL_ID}](https://huggingface.co/{FM_MODEL_ID}), running on *{power_device}*. | |
For more generative any-to-any examples, please see our [GitHub repo](https://github.com/apple/ml-4m#generation). | |
""") | |
img_path = gr.Image(label='RGB input image', type='filepath') | |
run_button = gr.Button(f"Predict with {MODEL_NAME}", scale=0, elem_id="run-button") | |
with gr.Accordion("Advanced Settings", open=False): | |
target_modalities = gr.CheckboxGroup( | |
choices=[ | |
('CLIP-B/16', 'tok_clip@224'), ('DINOv2-B/14', 'tok_dinov2@224'), ('ImageBind-H/14', 'tok_imagebind@224'), | |
('Depth', 'tok_depth@224'), ('Surface normals', 'tok_normal@224'), ('Semantic segmentation', 'tok_semseg@224'), | |
('Canny edges', 'tok_canny_edge@224'), ('SAM edges', 'tok_sam_edge@224'), ('Caption', 'caption'), | |
('Bounding boxes', 'det'), ('SAM instances (single pass*)', 'sam_instance'), ('Color palette', 'color_palette'), | |
('Metadata', 'metadata'), | |
], | |
value=[ | |
'tok_clip@224', 'tok_dinov2@224', 'tok_imagebind@224', | |
'tok_depth@224', 'tok_normal@224', 'tok_semseg@224', | |
'tok_canny_edge@224', 'tok_sam_edge@224', 'caption', | |
'det', 'sam_instance', 'color_palette', 'metadata' | |
], | |
label="Target modalities", | |
info='Choose which modalities are predicted (in this order).' | |
) | |
gr.Markdown(f""" | |
**Information on modalities**: | |
\* *SAM instances* in this demo are generated in a single pass and may look sparse. For sampling dense SAM instances, please see the convenience function | |
[`generate_sam_dense`](https://github.com/apple/ml-4m/blob/e11539965e45aa6731143d742c4493c46b4ef620/fourm/models/generate.py#L1230-L1273) | |
in `fourm.models.generate.GenerationSampler`, and our [4M-21 interactive notebook](https://github.com/apple/ml-4m/blob/main/notebooks/generation_4M-21.ipynb) for usage examples. | |
\*\* While 4M-21 models are capable of predicting *4D human poses*, visualizing them requires the SMPL model which cannot be distributed. | |
To visualize poses, please follow these steps: | |
1) Install via `pip install timm yacs smplx pyrender pyopengl==3.1.4`. | |
You may need to follow the [pyrender install instructions](https://pyrender.readthedocs.io/en/latest/install/index.html). | |
2) Download SMPL data from https://smpl.is.tue.mpg.de/. See https://github.com/shubham-goel/4D-Humans/ for an example. | |
3) Copy the required SMPL files (`smpl_mean_params.npz`, `SMPL_to_J19.pkl`, `smpl/SMPL_NEUTRAL.pkl`) to `fourm/utils/hmr2_utils/data` . | |
""") | |
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=False) | |
top_p = gr.Slider(label="Top-p", minimum=0.0, maximum=1.0, step=0.01, value=0.8) | |
top_k = gr.Slider(label="Top-k", minimum=0.0, maximum=1.0, step=0.01, value=0.0) | |
result = gr.Gallery( | |
label="Predictions", show_label=True, elem_id="gallery", type='pil', | |
columns=[4], rows=None, object_fit="contain", height="auto" | |
) | |
gr.Examples( | |
examples = examples, | |
fn = infer, | |
inputs = [img_path], | |
outputs = [result], | |
cache_examples='lazy', | |
) | |
run_button.click( | |
fn = infer, | |
inputs = [img_path, seed, randomize_seed, target_modalities, top_p, top_k], | |
outputs = [result] | |
) | |
demo.queue(max_size=10).launch() |