import streamlit as st import pandas as pd import sqlite3 import os import json from pathlib import Path from datetime import datetime, timezone from crewai import Agent, Crew, Process, Task from crewai_tools import tool from langchain_groq import ChatGroq from langchain.schema.output import LLMResult from langchain_core.callbacks.base import BaseCallbackHandler from langchain_community.tools.sql_database.tool import ( InfoSQLDatabaseTool, ListSQLDatabaseTool, QuerySQLCheckerTool, QuerySQLDataBaseTool, ) from langchain_community.utilities.sql_database import SQLDatabase from datasets import load_dataset import tempfile # API Key os.environ["GROQ_API_KEY"] = st.secrets.get("GROQ_API_KEY", "") # Initialize LLM class LLMCallbackHandler(BaseCallbackHandler): def __init__(self, log_path: Path): self.log_path = log_path def on_llm_start(self, serialized, prompts, **kwargs): with self.log_path.open("a", encoding="utf-8") as file: file.write(json.dumps({"event": "llm_start", "text": prompts[0], "timestamp": datetime.now().isoformat()}) + "\n") def on_llm_end(self, response: LLMResult, **kwargs): generation = response.generations[-1][-1].message.content with self.log_path.open("a", encoding="utf-8") as file: file.write(json.dumps({"event": "llm_end", "text": generation, "timestamp": datetime.now().isoformat()}) + "\n") llm = ChatGroq( temperature=0, model_name="groq/llama-3.3-70b-versatile", max_tokens=1024, callbacks=[LLMCallbackHandler(Path("prompts.jsonl"))], ) st.title("SQL-RAG Using CrewAI 🚀") st.write("Analyze datasets using natural language queries powered by SQL and CrewAI.") # Initialize session state for data persistence if "df" not in st.session_state: st.session_state.df = None # Dataset Input input_option = st.radio("Select Dataset Input:", ["Use Hugging Face Dataset", "Upload CSV File"]) if input_option == "Use Hugging Face Dataset": dataset_name = st.text_input("Enter Hugging Face Dataset Name:", value="Einstellung/demo-salaries") if st.button("Load Dataset"): try: with st.spinner("Loading dataset..."): dataset = load_dataset(dataset_name, split="train") st.session_state.df = pd.DataFrame(dataset) st.success(f"Dataset '{dataset_name}' loaded successfully!") st.dataframe(st.session_state.df.head()) except Exception as e: st.error(f"Error: {e}") elif input_option == "Upload CSV File": uploaded_file = st.file_uploader("Upload CSV File:", type=["csv"]) if uploaded_file: st.session_state.df = pd.read_csv(uploaded_file) st.success("File uploaded successfully!") st.dataframe(st.session_state.df.head()) # SQL-RAG Analysis if st.session_state.df is not None: temp_dir = tempfile.TemporaryDirectory() db_path = os.path.join(temp_dir.name, "data.db") connection = sqlite3.connect(db_path) st.session_state.df.to_sql("salaries", connection, if_exists="replace", index=False) db = SQLDatabase.from_uri(f"sqlite:///{db_path}") @tool("list_tables") def list_tables() -> str: """List all tables in the database.""" return ListSQLDatabaseTool(db=db).invoke("") @tool("tables_schema") def tables_schema(tables: str) -> str: """Get schema and sample rows for given tables.""" return InfoSQLDatabaseTool(db=db).invoke(tables) @tool("execute_sql") def execute_sql(sql_query: str) -> str: """Execute a SQL query against the database.""" return QuerySQLDataBaseTool(db=db).invoke(sql_query) @tool("check_sql") def check_sql(sql_query: str) -> str: """Check the validity of a SQL query.""" return QuerySQLCheckerTool(db=db, llm=llm).invoke({"query": sql_query}) sql_dev = Agent( role="Senior Database Developer", goal="Extract data using optimized SQL queries.", backstory="An expert in writing optimized SQL queries for complex databases.", llm=llm, tools=[list_tables, tables_schema, execute_sql, check_sql], ) data_analyst = Agent( role="Senior Data Analyst", goal="Analyze the data and produce insights.", backstory="A seasoned analyst who identifies trends and patterns in datasets.", llm=llm, ) report_writer = Agent( role="Technical Report Writer", goal="Summarize the insights into a clear report.", backstory="An expert in summarizing data insights into readable reports.", llm=llm, ) extract_data = Task( description="Extract data based on the query: {query}.", expected_output="Database results matching the query.", agent=sql_dev, ) analyze_data = Task( description="Analyze the extracted data for query: {query}.", expected_output="Analysis text summarizing findings.", agent=data_analyst, context=[extract_data], ) write_report = Task( description="Summarize the analysis into an executive report.", expected_output="Markdown report of insights.", agent=report_writer, context=[analyze_data], ) crew = Crew( agents=[sql_dev, data_analyst, report_writer], tasks=[extract_data, analyze_data, write_report], process=Process.sequential, verbose=True, ) query = st.text_area("Enter Query:", placeholder="e.g., 'What is the average salary for senior employees?'") if st.button("Submit Query"): with st.spinner("Processing query..."): inputs = {"query": query} result = crew.kickoff(inputs=inputs) st.markdown("### Analysis Report:") st.markdown(result) temp_dir.cleanup() else: st.info("Please load a dataset to proceed.")