import streamlit as st import pandas as pd import sqlite3 import os import json from pathlib import Path from datetime import datetime, timezone from crewai import Agent, Crew, Process, Task from crewai_tools import tool from langchain_groq import ChatGroq from langchain.schema.output import LLMResult from langchain_core.callbacks.base import BaseCallbackHandler from langchain_community.tools.sql_database.tool import ( InfoSQLDatabaseTool, ListSQLDatabaseTool, QuerySQLCheckerTool, QuerySQLDataBaseTool, ) from langchain_community.utilities.sql_database import SQLDatabase from datasets import load_dataset import tempfile os.environ["GROQ_API_KEY"] = st.secrets.get("GROQ_API_KEY", "") # LLM Logging class LLMCallbackHandler(BaseCallbackHandler): def __init__(self, log_path: Path): self.log_path = log_path def on_llm_start(self, serialized, prompts, **kwargs): with self.log_path.open("a", encoding="utf-8") as file: file.write(json.dumps({"event": "llm_start", "text": prompts[0], "timestamp": datetime.now().isoformat()}) + "\n") def on_llm_end(self, response: LLMResult, **kwargs): generation = response.generations[-1][-1].message.content with self.log_path.open("a", encoding="utf-8") as file: file.write(json.dumps({"event": "llm_end", "text": generation, "timestamp": datetime.now().isoformat()}) + "\n") llm = ChatGroq( temperature=0, model_name="mixtral-8x7b-32768", callbacks=[LLMCallbackHandler(Path("prompts.jsonl"))], ) st.title("SQL-RAG Using CrewAI 🚀") st.write("Analyze datasets using natural language queries powered by SQL and CrewAI.") # Data Input Options input_option = st.radio("Select Dataset Input:", ["Use Hugging Face Dataset", "Upload CSV File"]) df = None if input_option == "Use Hugging Face Dataset": dataset_name = st.text_input("Enter Hugging Face Dataset Name:", value="Einstellung/demo-salaries") if st.button("Load Dataset"): try: with st.spinner("Loading Hugging Face dataset..."): dataset = load_dataset(dataset_name, split="train") df = pd.DataFrame(dataset) st.success(f"Dataset '{dataset_name}' loaded successfully!") st.dataframe(df.head()) except Exception as e: st.error(f"Error loading dataset: {e}") else: uploaded_file = st.file_uploader("Upload CSV File:", type=["csv"]) if uploaded_file: df = pd.read_csv(uploaded_file) st.success("File uploaded successfully!") st.dataframe(df.head()) # SQL-RAG and Query Workflow if df is not None: temp_dir = tempfile.TemporaryDirectory() db_path = os.path.join(temp_dir.name, "data.db") connection = sqlite3.connect(db_path) df.to_sql("salaries", connection, if_exists="replace", index=False) db = SQLDatabase.from_uri(f"sqlite:///{db_path}") @tool("list_tables") def list_tables() -> str: """List all tables in the database.""" return ListSQLDatabaseTool(db=db).invoke("") @tool("tables_schema") def tables_schema(tables: str) -> str: """Return schema and example rows for given tables.""" return InfoSQLDatabaseTool(db=db).invoke(tables) @tool("execute_sql") def execute_sql(sql_query: str) -> str: """Execute a SQL query and return results.""" return QuerySQLDataBaseTool(db=db).invoke(sql_query) @tool("check_sql") def check_sql(sql_query: str) -> str: """Check SQL query validity.""" return QuerySQLCheckerTool(db=db, llm=llm).invoke({"query": sql_query}) sql_dev = Agent( role="Senior Database Developer", goal="Construct and execute SQL queries.", llm=llm, tools=[list_tables, tables_schema, execute_sql, check_sql], ) data_analyst = Agent( role="Senior Data Analyst", goal="Analyze the data returned from SQL queries.", llm=llm, ) report_writer = Agent( role="Senior Report Editor", goal="Summarize the analysis into a short report.", llm=llm, ) extract_data = Task( description="Extract data for the query: {query}.", expected_output="Database query results.", agent=sql_dev, ) analyze_data = Task( description="Analyze the query results for: {query}.", expected_output="Detailed analysis report.", agent=data_analyst, context=[extract_data], ) write_report = Task( description="Summarize the analysis into a brief executive summary.", expected_output="Markdown report.", agent=report_writer, context=[analyze_data], ) crew = Crew( agents=[sql_dev, data_analyst, report_writer], tasks=[extract_data, analyze_data, write_report], process=Process.sequential, verbose=2, ) query = st.text_area("Enter Query:", placeholder="e.g., 'What is the average salary by experience level?'") if st.button("Submit Query"): with st.spinner("Processing your query with CrewAI..."): inputs = {"query": query} result = crew.kickoff(inputs=inputs) st.markdown("### Analysis Report:") st.markdown(result) temp_dir.cleanup() else: st.info("Load a dataset to proceed.")