Spaces:
Running
Running
DrishtiSharma
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -20,10 +20,10 @@ from langchain_community.utilities.sql_database import SQLDatabase
|
|
20 |
from datasets import load_dataset
|
21 |
import tempfile
|
22 |
|
23 |
-
#
|
24 |
os.environ["GROQ_API_KEY"] = st.secrets.get("GROQ_API_KEY", "")
|
25 |
|
26 |
-
# LLM
|
27 |
class LLMCallbackHandler(BaseCallbackHandler):
|
28 |
def __init__(self, log_path: Path):
|
29 |
self.log_path = log_path
|
@@ -37,7 +37,7 @@ class LLMCallbackHandler(BaseCallbackHandler):
|
|
37 |
with self.log_path.open("a", encoding="utf-8") as file:
|
38 |
file.write(json.dumps({"event": "llm_end", "text": generation, "timestamp": datetime.now().isoformat()}) + "\n")
|
39 |
|
40 |
-
# LLM
|
41 |
llm = ChatGroq(
|
42 |
temperature=0,
|
43 |
model_name="mixtral-8x7b-32768",
|
@@ -45,98 +45,111 @@ llm = ChatGroq(
|
|
45 |
)
|
46 |
|
47 |
st.title("SQL-RAG Using CrewAI π")
|
48 |
-
st.write("Analyze
|
49 |
-
|
50 |
-
# Primary Option: Hugging Face Dataset
|
51 |
-
st.subheader("Option 1: Use a Hugging Face Dataset")
|
52 |
-
default_dataset = "Einstellung/demo-salaries"
|
53 |
-
dataset_name = st.text_input("Enter Hugging Face dataset name:", value=default_dataset)
|
54 |
|
|
|
|
|
55 |
df = None
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
st.
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
st.
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
df = pd.read_csv(uploaded_file)
|
72 |
st.success("File uploaded successfully!")
|
73 |
st.dataframe(df.head())
|
74 |
|
|
|
75 |
if df is not None:
|
76 |
-
# Create SQLite database
|
77 |
temp_dir = tempfile.TemporaryDirectory()
|
78 |
db_path = os.path.join(temp_dir.name, "data.db")
|
79 |
connection = sqlite3.connect(db_path)
|
80 |
-
df.to_sql("
|
81 |
db = SQLDatabase.from_uri(f"sqlite:///{db_path}")
|
82 |
|
83 |
-
# Tools
|
84 |
@tool("list_tables")
|
85 |
def list_tables() -> str:
|
|
|
86 |
return ListSQLDatabaseTool(db=db).invoke("")
|
87 |
|
88 |
@tool("tables_schema")
|
89 |
def tables_schema(tables: str) -> str:
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
return InfoSQLDatabaseTool(db=db).invoke(tables)
|
91 |
|
92 |
@tool("execute_sql")
|
93 |
def execute_sql(sql_query: str) -> str:
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
return QuerySQLDataBaseTool(db=db).invoke(sql_query)
|
95 |
|
96 |
@tool("check_sql")
|
97 |
def check_sql(sql_query: str) -> str:
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
return QuerySQLCheckerTool(db=db, llm=llm).invoke({"query": sql_query})
|
99 |
|
100 |
# Agents
|
101 |
sql_dev = Agent(
|
102 |
role="Database Developer",
|
103 |
-
goal="Extract data
|
104 |
llm=llm,
|
105 |
tools=[list_tables, tables_schema, execute_sql, check_sql],
|
106 |
-
allow_delegation=False,
|
107 |
)
|
108 |
|
109 |
data_analyst = Agent(
|
110 |
role="Data Analyst",
|
111 |
-
goal="Analyze and
|
112 |
llm=llm,
|
113 |
-
allow_delegation=False,
|
114 |
)
|
115 |
|
116 |
report_writer = Agent(
|
117 |
-
role="Report
|
118 |
-
goal="Summarize the analysis.",
|
119 |
llm=llm,
|
120 |
-
allow_delegation=False,
|
121 |
)
|
122 |
|
123 |
# Tasks
|
124 |
extract_data = Task(
|
125 |
-
description="Extract data
|
126 |
-
expected_output="Database
|
127 |
agent=sql_dev,
|
128 |
)
|
129 |
|
130 |
analyze_data = Task(
|
131 |
-
description="Analyze the
|
132 |
-
expected_output="
|
133 |
agent=data_analyst,
|
134 |
context=[extract_data],
|
135 |
)
|
136 |
|
137 |
write_report = Task(
|
138 |
-
description="Summarize the analysis into
|
139 |
-
expected_output="Markdown report",
|
140 |
agent=report_writer,
|
141 |
context=[analyze_data],
|
142 |
)
|
@@ -146,12 +159,11 @@ if df is not None:
|
|
146 |
tasks=[extract_data, analyze_data, write_report],
|
147 |
process=Process.sequential,
|
148 |
verbose=2,
|
149 |
-
memory=False,
|
150 |
)
|
151 |
|
152 |
-
query = st.
|
153 |
-
if
|
154 |
-
with st.spinner("Processing your query..."):
|
155 |
inputs = {"query": query}
|
156 |
result = crew.kickoff(inputs=inputs)
|
157 |
st.markdown("### Analysis Report:")
|
@@ -159,4 +171,4 @@ if df is not None:
|
|
159 |
|
160 |
temp_dir.cleanup()
|
161 |
else:
|
162 |
-
st.
|
|
|
20 |
from datasets import load_dataset
|
21 |
import tempfile
|
22 |
|
23 |
+
# Environment setup
|
24 |
os.environ["GROQ_API_KEY"] = st.secrets.get("GROQ_API_KEY", "")
|
25 |
|
26 |
+
# LLM Callback Logger
|
27 |
class LLMCallbackHandler(BaseCallbackHandler):
|
28 |
def __init__(self, log_path: Path):
|
29 |
self.log_path = log_path
|
|
|
37 |
with self.log_path.open("a", encoding="utf-8") as file:
|
38 |
file.write(json.dumps({"event": "llm_end", "text": generation, "timestamp": datetime.now().isoformat()}) + "\n")
|
39 |
|
40 |
+
# Initialize the LLM
|
41 |
llm = ChatGroq(
|
42 |
temperature=0,
|
43 |
model_name="mixtral-8x7b-32768",
|
|
|
45 |
)
|
46 |
|
47 |
st.title("SQL-RAG Using CrewAI π")
|
48 |
+
st.write("Analyze datasets using natural language queries powered by SQL and CrewAI.")
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
+
# Input Options
|
51 |
+
input_option = st.radio("Select Dataset Input:", ["Use Hugging Face Dataset", "Upload CSV File"])
|
52 |
df = None
|
53 |
+
|
54 |
+
if input_option == "Use Hugging Face Dataset":
|
55 |
+
dataset_name = st.text_input("Enter Hugging Face Dataset Name:", value="Einstellung/demo-salaries")
|
56 |
+
if st.button("Load Dataset"):
|
57 |
+
try:
|
58 |
+
with st.spinner("Loading Hugging Face dataset..."):
|
59 |
+
dataset = load_dataset(dataset_name, split="train")
|
60 |
+
df = pd.DataFrame(dataset)
|
61 |
+
st.success(f"Dataset '{dataset_name}' loaded successfully!")
|
62 |
+
st.dataframe(df.head())
|
63 |
+
except Exception as e:
|
64 |
+
st.error(f"Error loading dataset: {e}")
|
65 |
+
else:
|
66 |
+
uploaded_file = st.file_uploader("Upload CSV File:", type=["csv"])
|
67 |
+
if uploaded_file:
|
68 |
df = pd.read_csv(uploaded_file)
|
69 |
st.success("File uploaded successfully!")
|
70 |
st.dataframe(df.head())
|
71 |
|
72 |
+
# SQL-RAG Analysis
|
73 |
if df is not None:
|
|
|
74 |
temp_dir = tempfile.TemporaryDirectory()
|
75 |
db_path = os.path.join(temp_dir.name, "data.db")
|
76 |
connection = sqlite3.connect(db_path)
|
77 |
+
df.to_sql("salaries", connection, if_exists="replace", index=False)
|
78 |
db = SQLDatabase.from_uri(f"sqlite:///{db_path}")
|
79 |
|
80 |
+
# Tools with proper docstrings
|
81 |
@tool("list_tables")
|
82 |
def list_tables() -> str:
|
83 |
+
"""List all tables in the SQLite database."""
|
84 |
return ListSQLDatabaseTool(db=db).invoke("")
|
85 |
|
86 |
@tool("tables_schema")
|
87 |
def tables_schema(tables: str) -> str:
|
88 |
+
"""
|
89 |
+
Get the schema and sample rows for specific tables in the database.
|
90 |
+
|
91 |
+
Input: Comma-separated table names.
|
92 |
+
Example: 'salaries'
|
93 |
+
"""
|
94 |
return InfoSQLDatabaseTool(db=db).invoke(tables)
|
95 |
|
96 |
@tool("execute_sql")
|
97 |
def execute_sql(sql_query: str) -> str:
|
98 |
+
"""
|
99 |
+
Execute a valid SQL query on the database and return the results.
|
100 |
+
|
101 |
+
Input: A SQL query string.
|
102 |
+
Example: 'SELECT * FROM salaries LIMIT 5;'
|
103 |
+
"""
|
104 |
return QuerySQLDataBaseTool(db=db).invoke(sql_query)
|
105 |
|
106 |
@tool("check_sql")
|
107 |
def check_sql(sql_query: str) -> str:
|
108 |
+
"""
|
109 |
+
Check the validity of a SQL query before execution.
|
110 |
+
|
111 |
+
Input: A SQL query string.
|
112 |
+
Example: 'SELECT salary FROM salaries WHERE salary > 10000;'
|
113 |
+
"""
|
114 |
return QuerySQLCheckerTool(db=db, llm=llm).invoke({"query": sql_query})
|
115 |
|
116 |
# Agents
|
117 |
sql_dev = Agent(
|
118 |
role="Database Developer",
|
119 |
+
goal="Extract relevant data by executing SQL queries.",
|
120 |
llm=llm,
|
121 |
tools=[list_tables, tables_schema, execute_sql, check_sql],
|
|
|
122 |
)
|
123 |
|
124 |
data_analyst = Agent(
|
125 |
role="Data Analyst",
|
126 |
+
goal="Analyze the extracted data and generate detailed insights.",
|
127 |
llm=llm,
|
|
|
128 |
)
|
129 |
|
130 |
report_writer = Agent(
|
131 |
+
role="Report Writer",
|
132 |
+
goal="Summarize the analysis into an executive report.",
|
133 |
llm=llm,
|
|
|
134 |
)
|
135 |
|
136 |
# Tasks
|
137 |
extract_data = Task(
|
138 |
+
description="Extract data for the query: {query}.",
|
139 |
+
expected_output="Database query results.",
|
140 |
agent=sql_dev,
|
141 |
)
|
142 |
|
143 |
analyze_data = Task(
|
144 |
+
description="Analyze the query results for: {query}.",
|
145 |
+
expected_output="Analysis report.",
|
146 |
agent=data_analyst,
|
147 |
context=[extract_data],
|
148 |
)
|
149 |
|
150 |
write_report = Task(
|
151 |
+
description="Summarize the analysis into an executive summary.",
|
152 |
+
expected_output="Markdown-formatted report.",
|
153 |
agent=report_writer,
|
154 |
context=[analyze_data],
|
155 |
)
|
|
|
159 |
tasks=[extract_data, analyze_data, write_report],
|
160 |
process=Process.sequential,
|
161 |
verbose=2,
|
|
|
162 |
)
|
163 |
|
164 |
+
query = st.text_area("Enter Query:", placeholder="e.g., 'What is the average salary by experience level?'")
|
165 |
+
if st.button("Submit Query"):
|
166 |
+
with st.spinner("Processing your query with CrewAI..."):
|
167 |
inputs = {"query": query}
|
168 |
result = crew.kickoff(inputs=inputs)
|
169 |
st.markdown("### Analysis Report:")
|
|
|
171 |
|
172 |
temp_dir.cleanup()
|
173 |
else:
|
174 |
+
st.info("Load a dataset to proceed.")
|