DrishtiSharma commited on
Commit
41d630c
Β·
verified Β·
1 Parent(s): ac04073

Delete mylab/almost_blah_v2.py

Browse files
Files changed (1) hide show
  1. mylab/almost_blah_v2.py +0 -259
mylab/almost_blah_v2.py DELETED
@@ -1,259 +0,0 @@
1
- import streamlit as st
2
- import pandas as pd
3
- import sqlite3
4
- import os
5
- import json
6
- from pathlib import Path
7
- import plotly.express as px
8
- from datetime import datetime, timezone
9
- from crewai import Agent, Crew, Process, Task
10
- from crewai.tools import tool
11
- from langchain_groq import ChatGroq
12
- from langchain_openai import ChatOpenAI
13
- from langchain.schema.output import LLMResult
14
- from langchain_community.tools.sql_database.tool import (
15
- InfoSQLDatabaseTool,
16
- ListSQLDatabaseTool,
17
- QuerySQLCheckerTool,
18
- QuerySQLDataBaseTool,
19
- )
20
- from langchain_community.utilities.sql_database import SQLDatabase
21
- from datasets import load_dataset
22
- import tempfile
23
-
24
- st.title("SQL-RAG Using CrewAI πŸš€")
25
- st.write("Analyze datasets using natural language queries powered by SQL and CrewAI.")
26
-
27
- # Initialize LLM
28
- llm = None
29
-
30
- # Model Selection
31
- model_choice = st.radio("Select LLM", ["GPT-4o", "llama-3.3-70b"], index=0, horizontal=True)
32
-
33
- # API Key Validation and LLM Initialization
34
- groq_api_key = os.getenv("GROQ_API_KEY")
35
- openai_api_key = os.getenv("OPENAI_API_KEY")
36
-
37
- if model_choice == "llama-3.3-70b":
38
- if not groq_api_key:
39
- st.error("Groq API key is missing. Please set the GROQ_API_KEY environment variable.")
40
- llm = None
41
- else:
42
- llm = ChatGroq(groq_api_key=groq_api_key, model="groq/llama-3.3-70b-versatile")
43
- elif model_choice == "GPT-4o":
44
- if not openai_api_key:
45
- st.error("OpenAI API key is missing. Please set the OPENAI_API_KEY environment variable.")
46
- llm = None
47
- else:
48
- llm = ChatOpenAI(api_key=openai_api_key, model="gpt-4o")
49
-
50
- # Initialize session state for data persistence
51
- if "df" not in st.session_state:
52
- st.session_state.df = None
53
- if "show_preview" not in st.session_state:
54
- st.session_state.show_preview = False
55
-
56
- # Dataset Input
57
- input_option = st.radio("Select Dataset Input:", ["Use Hugging Face Dataset", "Upload CSV File"])
58
-
59
- if input_option == "Use Hugging Face Dataset":
60
- dataset_name = st.text_input("Enter Hugging Face Dataset Name:", value="Einstellung/demo-salaries")
61
- if st.button("Load Dataset"):
62
- try:
63
- with st.spinner("Loading dataset..."):
64
- dataset = load_dataset(dataset_name, split="train")
65
- st.session_state.df = pd.DataFrame(dataset)
66
- st.session_state.show_preview = True # Show preview after loading
67
- st.success(f"Dataset '{dataset_name}' loaded successfully!")
68
- except Exception as e:
69
- st.error(f"Error: {e}")
70
-
71
- elif input_option == "Upload CSV File":
72
- uploaded_file = st.file_uploader("Upload CSV File:", type=["csv"])
73
- if uploaded_file:
74
- try:
75
- st.session_state.df = pd.read_csv(uploaded_file)
76
- st.session_state.show_preview = True # Show preview after loading
77
- st.success("File uploaded successfully!")
78
- except Exception as e:
79
- st.error(f"Error loading file: {e}")
80
-
81
- # Show Dataset Preview Only After Loading
82
- if st.session_state.df is not None and st.session_state.show_preview:
83
- st.subheader("πŸ“‚ Dataset Preview")
84
- st.dataframe(st.session_state.df.head())
85
-
86
- # SQL-RAG Analysis
87
- if st.session_state.df is not None:
88
- temp_dir = tempfile.TemporaryDirectory()
89
- db_path = os.path.join(temp_dir.name, "data.db")
90
- connection = sqlite3.connect(db_path)
91
- st.session_state.df.to_sql("salaries", connection, if_exists="replace", index=False)
92
- db = SQLDatabase.from_uri(f"sqlite:///{db_path}")
93
-
94
- @tool("list_tables")
95
- def list_tables() -> str:
96
- """List all tables in the database."""
97
- return ListSQLDatabaseTool(db=db).invoke("")
98
-
99
- @tool("tables_schema")
100
- def tables_schema(tables: str) -> str:
101
- """Get the schema and sample rows for the specified tables."""
102
- return InfoSQLDatabaseTool(db=db).invoke(tables)
103
-
104
- @tool("execute_sql")
105
- def execute_sql(sql_query: str) -> str:
106
- """Execute a SQL query against the database and return the results."""
107
- return QuerySQLDataBaseTool(db=db).invoke(sql_query)
108
-
109
- @tool("check_sql")
110
- def check_sql(sql_query: str) -> str:
111
- """Validate the SQL query syntax and structure before execution."""
112
- return QuerySQLCheckerTool(db=db, llm=llm).invoke({"query": sql_query})
113
-
114
- # Agent for SQL data extraction
115
- sql_dev = Agent(
116
- role="Senior Database Developer",
117
- goal="Extract data using optimized SQL queries.",
118
- backstory="An expert in writing optimized SQL queries for complex databases.",
119
- llm=llm,
120
- tools=[list_tables, tables_schema, execute_sql, check_sql],
121
- )
122
-
123
- # Agent for data analysis
124
- data_analyst = Agent(
125
- role="Senior Data Analyst",
126
- goal="Analyze the data and produce insights.",
127
- backstory="A seasoned analyst who identifies trends and patterns in datasets.",
128
- llm=llm,
129
- )
130
-
131
- # Agent for generating the main report (without Conclusion)
132
- report_writer = Agent(
133
- role="Technical Report Writer",
134
- goal="Summarize the analysis into a structured report with Introduction, Key Insights, and Analysis. DO NOT include any conclusion or summary.",
135
- backstory="Markdown report excluding Conclusion and Summary.",
136
- llm=llm,
137
- )
138
-
139
- # New Agent for generating ONLY the Conclusion
140
- conclusion_writer = Agent(
141
- role="Conclusion Specialist",
142
- goal="Summarize findings into a clear and concise Conclusion/Summary section.",
143
- backstory="An expert in crafting well-structured and insightful conclusions.",
144
- llm=llm,
145
- )
146
-
147
- # Tasks for each agent
148
- extract_data = Task(
149
- description="Extract data based on the query: {query}.",
150
- expected_output="Database results matching the query.",
151
- agent=sql_dev,
152
- )
153
-
154
- analyze_data = Task(
155
- description="Analyze the extracted data for query: {query}.",
156
- expected_output="Provide ONLY Key Insights and Analysis. Exclude Introduction and Conclusion.",
157
- agent=data_analyst,
158
- context=[extract_data],
159
- )
160
-
161
- write_report = Task(
162
- description="Write the report with ONLY Key Insights and Analysis. DO NOT include Introduction or Conclusion.",
163
- expected_output="Markdown report excluding Introduction and Conclusion.",
164
- agent=report_writer,
165
- context=[analyze_data],
166
- )
167
-
168
- write_conclusion = Task(
169
- description="Summarize the findings into a concise Conclusion.",
170
- expected_output="Markdown-formatted Conclusion section.",
171
- agent=conclusion_writer,
172
- context=[analyze_data],
173
- )
174
-
175
- # Crew setup
176
- crew = Crew(
177
- agents=[sql_dev, data_analyst, report_writer, conclusion_writer],
178
- tasks=[extract_data, analyze_data, write_report, write_conclusion],
179
- process=Process.sequential,
180
- verbose=True,
181
- )
182
-
183
- # Tabs for Query Results and General Insights
184
- tab1, tab2 = st.tabs(["πŸ” Query Insights + Viz", "πŸ“Š Full Data Viz"])
185
-
186
- # Tab 1: Query-Insights + Visualization
187
- with tab1:
188
- query = st.text_area("Enter Query:", value="Provide insights into the salary of a Principal Data Scientist.")
189
- if st.button("Submit Query"):
190
- with st.spinner("Processing query..."):
191
- # Step 1: Generate Report without Conclusion
192
- report_inputs = {"query": query + " Provide a detailed analysis but DO NOT include a Conclusion."}
193
- report_result = crew.kickoff(inputs=report_inputs)
194
-
195
- # Step 2: Generate only the Conclusion
196
- conclusion_inputs = {"query": query + " Now, provide only the Conclusion for this analysis."}
197
- conclusion_result = crew.kickoff(inputs=conclusion_inputs)
198
-
199
- # Directly use the outputs
200
- main_report = report_result if report_result else "⚠️ No Report Generated."
201
- conclusion = conclusion_result if conclusion_result else "⚠️ No Conclusion Generated."
202
-
203
- st.markdown("### Analysis Report:")
204
- st.markdown(main_report)
205
-
206
- # Step 3: Generate relevant visualizations
207
- visualizations = []
208
-
209
- fig_salary = px.box(st.session_state.df, x="job_title", y="salary_in_usd",
210
- title="Salary Distribution by Job Title")
211
- visualizations.append(fig_salary)
212
-
213
- fig_experience = px.bar(
214
- st.session_state.df.groupby("experience_level")["salary_in_usd"].mean().reset_index(),
215
- x="experience_level", y="salary_in_usd",
216
- title="Average Salary by Experience Level"
217
- )
218
- visualizations.append(fig_experience)
219
-
220
- fig_employment = px.box(st.session_state.df, x="employment_type", y="salary_in_usd",
221
- title="Salary Distribution by Employment Type")
222
- visualizations.append(fig_employment)
223
-
224
- # Step 4: Insert Visual Insights
225
- st.markdown("## πŸ“Š Visual Insights")
226
- for fig in visualizations:
227
- st.plotly_chart(fig, use_container_width=True)
228
-
229
- # Step 5: Append the Conclusion
230
- st.markdown("## Conclusion")
231
- st.markdown(conclusion)
232
-
233
- # Tab 2: Full Data Visualization
234
- with tab2:
235
- st.subheader("πŸ“Š Comprehensive Data Visualizations")
236
-
237
- fig1 = px.histogram(st.session_state.df, x="job_title", title="Job Title Frequency")
238
- st.plotly_chart(fig1)
239
-
240
- fig2 = px.bar(
241
- st.session_state.df.groupby("experience_level")["salary_in_usd"].mean().reset_index(),
242
- x="experience_level", y="salary_in_usd",
243
- title="Average Salary by Experience Level"
244
- )
245
- st.plotly_chart(fig2)
246
-
247
- fig3 = px.box(st.session_state.df, x="employment_type", y="salary_in_usd",
248
- title="Salary Distribution by Employment Type")
249
- st.plotly_chart(fig3)
250
-
251
- temp_dir.cleanup()
252
- else:
253
- st.info("Please load a dataset to proceed.")
254
-
255
-
256
- # Sidebar Reference
257
- with st.sidebar:
258
- st.header("πŸ“š Reference:")
259
- st.markdown("[SQL Agents w CrewAI & Llama 3 - Plaban Nayak](https://github.com/plaban1981/Agents/blob/main/SQL_Agents_with_CrewAI_and_Llama_3.ipynb)")