File size: 5,899 Bytes
e8e485a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9320eb6
e8e485a
 
9320eb6
e8e485a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9320eb6
134bb5d
e8e485a
 
 
 
 
 
9320eb6
 
 
e8e485a
9320eb6
 
e8e485a
 
 
 
9320eb6
e8e485a
9320eb6
e8e485a
9320eb6
e8e485a
9320eb6
 
e8e485a
 
9320eb6
e8e485a
9320eb6
e8e485a
 
9320eb6
e8e485a
 
 
9320eb6
e8e485a
 
 
 
9320eb6
e8e485a
 
 
 
9320eb6
e8e485a
 
 
 
9320eb6
e8e485a
 
 
 
9320eb6
e8e485a
 
 
9320eb6
 
 
e8e485a
 
 
 
 
9320eb6
 
 
e8e485a
 
 
 
9320eb6
 
 
e8e485a
 
 
 
9320eb6
 
e8e485a
 
 
 
9320eb6
 
e8e485a
 
 
 
 
9320eb6
 
e8e485a
 
 
 
 
 
 
 
9320eb6
e8e485a
 
9320eb6
e8e485a
9320eb6
e8e485a
 
 
 
 
 
 
9320eb6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import streamlit as st
import pandas as pd
import sqlite3
import os
import json
from pathlib import Path
from datetime import datetime, timezone
from crewai import Agent, Crew, Process, Task
from crewai_tools import tool
from langchain_groq import ChatGroq
from langchain.schema.output import LLMResult
from langchain_core.callbacks.base import BaseCallbackHandler
from langchain_community.tools.sql_database.tool import (
    InfoSQLDatabaseTool,
    ListSQLDatabaseTool,
    QuerySQLCheckerTool,
    QuerySQLDataBaseTool,
)
from langchain_community.utilities.sql_database import SQLDatabase
from datasets import load_dataset
import tempfile

# API Key
os.environ["GROQ_API_KEY"] = st.secrets.get("GROQ_API_KEY", "")

# Initialize LLM
class LLMCallbackHandler(BaseCallbackHandler):
    def __init__(self, log_path: Path):
        self.log_path = log_path

    def on_llm_start(self, serialized, prompts, **kwargs):
        with self.log_path.open("a", encoding="utf-8") as file:
            file.write(json.dumps({"event": "llm_start", "text": prompts[0], "timestamp": datetime.now().isoformat()}) + "\n")

    def on_llm_end(self, response: LLMResult, **kwargs):
        generation = response.generations[-1][-1].message.content
        with self.log_path.open("a", encoding="utf-8") as file:
            file.write(json.dumps({"event": "llm_end", "text": generation, "timestamp": datetime.now().isoformat()}) + "\n")

llm = ChatGroq(
    temperature=0,
    model_name="groq/llama-3.3-70b-versatile",
    max_tokens=1024,
    callbacks=[LLMCallbackHandler(Path("prompts.jsonl"))],
)

st.title("SQL-RAG Using CrewAI πŸš€")
st.write("Analyze datasets using natural language queries powered by SQL and CrewAI.")

# Initialize session state for data persistence
if "df" not in st.session_state:
    st.session_state.df = None

# Dataset Input
input_option = st.radio("Select Dataset Input:", ["Use Hugging Face Dataset", "Upload CSV File"])
if input_option == "Use Hugging Face Dataset":
    dataset_name = st.text_input("Enter Hugging Face Dataset Name:", value="Einstellung/demo-salaries")
    if st.button("Load Dataset"):
        try:
            with st.spinner("Loading dataset..."):
                dataset = load_dataset(dataset_name, split="train")
                st.session_state.df = pd.DataFrame(dataset)
                st.success(f"Dataset '{dataset_name}' loaded successfully!")
                st.dataframe(st.session_state.df.head())
        except Exception as e:
            st.error(f"Error: {e}")
elif input_option == "Upload CSV File":
    uploaded_file = st.file_uploader("Upload CSV File:", type=["csv"])
    if uploaded_file:
        st.session_state.df = pd.read_csv(uploaded_file)
        st.success("File uploaded successfully!")
        st.dataframe(st.session_state.df.head())

# SQL-RAG Analysis
if st.session_state.df is not None:
    temp_dir = tempfile.TemporaryDirectory()
    db_path = os.path.join(temp_dir.name, "data.db")
    connection = sqlite3.connect(db_path)
    st.session_state.df.to_sql("salaries", connection, if_exists="replace", index=False)
    db = SQLDatabase.from_uri(f"sqlite:///{db_path}")

    @tool("list_tables")
    def list_tables() -> str:
        """List all tables in the database."""
        return ListSQLDatabaseTool(db=db).invoke("")

    @tool("tables_schema")
    def tables_schema(tables: str) -> str:
        """Get schema and sample rows for given tables."""
        return InfoSQLDatabaseTool(db=db).invoke(tables)

    @tool("execute_sql")
    def execute_sql(sql_query: str) -> str:
        """Execute a SQL query against the database."""
        return QuerySQLDataBaseTool(db=db).invoke(sql_query)

    @tool("check_sql")
    def check_sql(sql_query: str) -> str:
        """Check the validity of a SQL query."""
        return QuerySQLCheckerTool(db=db, llm=llm).invoke({"query": sql_query})

    sql_dev = Agent(
        role="Senior Database Developer",
        goal="Extract data using optimized SQL queries.",
        backstory="An expert in writing optimized SQL queries for complex databases.",
        llm=llm,
        tools=[list_tables, tables_schema, execute_sql, check_sql],
    )

    data_analyst = Agent(
        role="Senior Data Analyst",
        goal="Analyze the data and produce insights.",
        backstory="A seasoned analyst who identifies trends and patterns in datasets.",
        llm=llm,
    )

    report_writer = Agent(
        role="Technical Report Writer",
        goal="Summarize the insights into a clear report.",
        backstory="An expert in summarizing data insights into readable reports.",
        llm=llm,
    )

    extract_data = Task(
        description="Extract data based on the query: {query}.",
        expected_output="Database results matching the query.",
        agent=sql_dev,
    )

    analyze_data = Task(
        description="Analyze the extracted data for query: {query}.",
        expected_output="Analysis text summarizing findings.",
        agent=data_analyst,
        context=[extract_data],
    )

    write_report = Task(
        description="Summarize the analysis into an executive report.",
        expected_output="Markdown report of insights.",
        agent=report_writer,
        context=[analyze_data],
    )

    crew = Crew(
        agents=[sql_dev, data_analyst, report_writer],
        tasks=[extract_data, analyze_data, write_report],
        process=Process.sequential,
        verbose=True,
    )

    query = st.text_area("Enter Query:", placeholder="e.g., 'What is the average salary for senior employees?'")
    if st.button("Submit Query"):
        with st.spinner("Processing query..."):
            inputs = {"query": query}
            result = crew.kickoff(inputs=inputs)
            st.markdown("### Analysis Report:")
            st.markdown(result)

    temp_dir.cleanup()
else:
    st.info("Please load a dataset to proceed.")