DrishtiSharma's picture
Update main.py
ae79188 verified
import os
from langchain.prompts import PromptTemplate
from langchain.output_parsers.list import NumberedListOutputParser
from langchain.output_parsers import ResponseSchema, StructuredOutputParser
from langchain_community.chat_models import ChatOpenAI
import serpapi
model_name = 'gpt-4-0125-preview'
openai_key = os.getenv("OPENAI_API_KEY")
serpapi_key = os.getenv("SERP_API_KEY")
# generate search terms using OpenAI
def generate_search_terms(input_text: str, number_of_generated_search_terms):
llm = ChatOpenAI(model_name=model_name, temperature=0.0)
output_parser = NumberedListOutputParser()
format_instructions = output_parser.get_format_instructions()
prompt = PromptTemplate(
template="As a search specialist with expertise in optimizing searches in the Google Patents database, your task is to generate " + str(number_of_generated_search_terms) + " optimal keyword or keyword list like single and multiple keywords(please choose correct terms, i want to get at least 10 results for each query, don't be too specific) like, `(rabbit toy), (coffee brew) AND (pot) OR (top), (stabilization system), (vr heading) OR (logic freq)`, so dont use \" or ' use only phranthesis, searches to find similar patents for the following invention idea: ---BEGINNING--- `{user_input}` ---END--- {format_instructions}\n",
input_variables=["user_input"],
partial_variables={"format_instructions": format_instructions}
)
output = llm.predict(text=prompt.format(user_input=input_text))
output_list = output_parser.parse(output)
return output_list
# search Google Patents using SerpApi
def search_on_google_patents(terms: list):
# multiple_queries = ';'.join(terms)
search_terms_patents ={}
for search_term in terms:
params = {
"engine": "google_patents",
"q": search_term,
"clustered": "true",
"scholar": "true",
"api_key": serpapi_key
}
results = serpapi.search(params)
if results.get('error', False):
raise results['error']
organic_results = results["organic_results"]
patents = []
for result in organic_results:
if "patent_id" in result:
patent = {
"patentTitle": result["title"],
"patentNumber": result["publication_number"],
"inventors": [result["inventor"]],
"assignee": result["assignee"],
"abstract": result["snippet"],
"publicationDate": result["publication_date"],
"filingDate": result["filing_date"],
"patentUrl": result["serpapi_link"]
}
patents.append(patent)
search_terms_patents[search_term] = patents
return search_terms_patents
# check similarity of patents using OpenAI
def check_similarity_of_patents(input_text, patents: list):
llm = ChatOpenAI(model_name=model_name, temperature=0.0)
response_schemas = [
ResponseSchema(
name="listOfPatents",
description="List of dicts of patentTitle, patentNumber and similarityScore (score over 100): [{patentTitle: string, patentNumber: string, similarityScore: number}]",
type="array(objects)"
)
]
output_parser = StructuredOutputParser.from_response_schemas(response_schemas)
format_instructions = output_parser.get_format_instructions()
prompt = PromptTemplate(
template="Could you please generate a semantic similarity score out of 100 for the following patent information {user_input}, comparing it with the following abstracts:" + '\n'.join([f"\n===BEGINNING=== {i+1} - {patent['patentTitle']} - {patent['patentNumber']} - {patent['abstract']} ===END===" for i, patent in enumerate(patents)]) + "\n{format_instructions}\n",
input_variables=["user_input"],
partial_variables={"format_instructions": format_instructions}
)
output = llm.predict(text=prompt.format(user_input=input_text))
output_list = output_parser.parse(output)
return output_list
# merge patents with similarity data
def merge_patents_with_similarity(patents, similarity_data):
merged_list = []
for patent in patents:
patent_number = patent['patentNumber']
for similarity_patent in similarity_data['listOfPatents']:
if similarity_patent['patentNumber'] == patent_number:
patent['similarityScore'] = similarity_patent['similarityScore']
patent['patentGoogleUrl'] = f"https://patents.google.com/patent/{patent_number}"
break
merged_list.append(patent)
merged_list = sorted(merged_list, key=lambda x: x['similarityScore'], reverse=True)
return list(merged_list)
# sort patents by similarity score
def sort_patents_by_similarity_score(data):
sorted_patents = sorted(data, key=lambda x: x['similarityScore'], reverse=True)
return sorted_patents