File size: 1,425 Bytes
765a4ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
import pandas as pd
import json
class FewShotPosts:
def __init__(self, file_path="data/processed_posts.json"):
self.df = None
self.unique_tags = None
self.load_posts(file_path)
def load_posts(self, file_path):
with open(file_path, encoding="utf-8") as f:
posts = json.load(f)
self.df = pd.json_normalize(posts)
self.df['length'] = self.df['line_count'].apply(self.categorize_length)
# collect unique tags
all_tags = self.df['tags'].apply(lambda x: x).sum()
self.unique_tags = list(set(all_tags))
def get_filtered_posts(self, length, language, tag):
df_filtered = self.df[
(self.df['tags'].apply(lambda tags: tag in tags)) & # Tags contain 'Influencer'
(self.df['language'] == language) & # Language is 'English'
(self.df['length'] == length) # Line count is less than 5
]
return df_filtered.to_dict(orient='records')
def categorize_length(self, line_count):
if line_count < 5:
return "Short"
elif 5 <= line_count <= 10:
return "Medium"
else:
return "Long"
def get_tags(self):
return self.unique_tags
if __name__ == "__main__":
fs = FewShotPosts()
# print(fs.get_tags())
posts = fs.get_filtered_posts("Medium","Hinglish","Job Search")
print(posts) |