Spaces:
Sleeping
Sleeping
DrishtiSharma
commited on
Create patentwiz/qa_agent.py
Browse files- patentwiz/qa_agent.py +333 -0
patentwiz/qa_agent.py
ADDED
@@ -0,0 +1,333 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import nltk
|
4 |
+
import openai
|
5 |
+
import chromadb
|
6 |
+
from langchain.document_loaders import UnstructuredXMLLoader
|
7 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
8 |
+
from langchain.embeddings.openai import OpenAIEmbeddings
|
9 |
+
from langchain.vectorstores import Chroma
|
10 |
+
from langchain.chat_models import ChatOpenAI
|
11 |
+
from langchain.chains import RetrievalQA
|
12 |
+
from langchain.document_loaders import TextLoader
|
13 |
+
from langchain.prompts import PromptTemplate
|
14 |
+
from langchain.chains import AnalyzeDocumentChain
|
15 |
+
from langchain.chains.question_answering import load_qa_chain
|
16 |
+
from langchain.callbacks import get_openai_callback
|
17 |
+
from langchain.llms import OpenAI
|
18 |
+
from langchain.vectorstores import FAISS
|
19 |
+
from langchain.text_splitter import CharacterTextSplitter
|
20 |
+
|
21 |
+
# Clear ChromaDB cache to fix tenant issue
|
22 |
+
chromadb.api.client.SharedSystemClient.clear_system_cache()
|
23 |
+
|
24 |
+
# Move variables and functions that don't need to be in the main function outside
|
25 |
+
nltk.download("punkt", quiet=True)
|
26 |
+
|
27 |
+
from nltk import word_tokenize, sent_tokenize
|
28 |
+
|
29 |
+
|
30 |
+
openai.api_key = os.getenv("OPENAI_API_KEY")
|
31 |
+
if openai.api_key is None:
|
32 |
+
raise Exception("OPENAI_API_KEY not found in environment variables")
|
33 |
+
|
34 |
+
embeddings = OpenAIEmbeddings()
|
35 |
+
|
36 |
+
|
37 |
+
def split_docs(documents, chunk_size=1000, chunk_overlap=0):
|
38 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
39 |
+
chunk_size=chunk_size, chunk_overlap=chunk_overlap
|
40 |
+
)
|
41 |
+
return text_splitter.split_documents(documents)
|
42 |
+
|
43 |
+
|
44 |
+
def call_QA_to_json(
|
45 |
+
prompt, year, month, day, saved_patent_names, index=0, logging=True, model_name="gpt-3.5-turbo"
|
46 |
+
):
|
47 |
+
"""
|
48 |
+
Generate embeddings from txt documents, retrieve data based on the provided prompt, and return the result as a JSON object.
|
49 |
+
Parameters:
|
50 |
+
prompt (str): The input prompt for the retrieval process.
|
51 |
+
year (int): The year part of the data folder name.
|
52 |
+
month (int): The month part of the data folder name.
|
53 |
+
day (int): The day part of the data folder name.
|
54 |
+
saved_patent_names (list): A list of strings containing the names of saved patent text files.
|
55 |
+
index (int): The index of the saved patent text file to process. Default is 0.
|
56 |
+
logging (bool): The boolean to print logs
|
57 |
+
Returns:
|
58 |
+
tuple: A tuple containing two elements:
|
59 |
+
- Cost of OpenAI API
|
60 |
+
- A JSON string representing the output from the retrieval chain.
|
61 |
+
This function loads the specified txt file, generates embeddings from its content,
|
62 |
+
and uses a retrieval chain to retrieve data based on the provided prompt.
|
63 |
+
The retrieved data is returned as a JSON object, and the raw documents are returned as a list of strings.
|
64 |
+
The output is also written to a file in the 'output' directory with the name '{index}.json'.
|
65 |
+
"""
|
66 |
+
|
67 |
+
llm = ChatOpenAI(model_name=model_name, temperature=0, cache=False)
|
68 |
+
file_path = os.path.join(
|
69 |
+
os.getcwd(),
|
70 |
+
"data",
|
71 |
+
"ipa" + str(year)[2:] + f"{month:02d}" + f"{day:02d}",
|
72 |
+
saved_patent_names[index],
|
73 |
+
)
|
74 |
+
|
75 |
+
if logging:
|
76 |
+
print(f"Loading documents from: {file_path}")
|
77 |
+
loader = TextLoader(file_path)
|
78 |
+
documents_raw = loader.load()
|
79 |
+
|
80 |
+
documents = split_docs(documents_raw)
|
81 |
+
|
82 |
+
|
83 |
+
if logging:
|
84 |
+
print("Generating embeddings and persisting...")
|
85 |
+
|
86 |
+
vectordb = Chroma.from_documents(
|
87 |
+
documents=documents, embedding=embeddings,
|
88 |
+
)
|
89 |
+
|
90 |
+
# vectordb.persist()
|
91 |
+
PROMPT_FORMAT = """
|
92 |
+
Task: Use the following pieces of context to answer the question at the end.
|
93 |
+
{context}
|
94 |
+
Question: {question}
|
95 |
+
"""
|
96 |
+
|
97 |
+
PROMPT = PromptTemplate(
|
98 |
+
template=PROMPT_FORMAT, input_variables=["context", "question"]
|
99 |
+
)
|
100 |
+
|
101 |
+
chain_type_kwargs = {"prompt": PROMPT}
|
102 |
+
|
103 |
+
|
104 |
+
|
105 |
+
retrieval_chain = RetrievalQA.from_chain_type(
|
106 |
+
llm, chain_type="stuff",
|
107 |
+
retriever=vectordb.as_retriever(),
|
108 |
+
chain_type_kwargs=chain_type_kwargs,
|
109 |
+
# return_source_documents=True
|
110 |
+
|
111 |
+
)
|
112 |
+
|
113 |
+
if logging:
|
114 |
+
print("Running retrieval chain...")
|
115 |
+
|
116 |
+
with get_openai_callback() as cb:
|
117 |
+
output = retrieval_chain.run(prompt)
|
118 |
+
if logging:
|
119 |
+
print(f"Total Tokens: {cb.total_tokens}")
|
120 |
+
print(f"Prompt Tokens: {cb.prompt_tokens}")
|
121 |
+
print(f"Completion Tokens: {cb.completion_tokens}")
|
122 |
+
print(f"Successful Requests: {cb.successful_requests}")
|
123 |
+
print(f"Total Cost (USD): ${cb.total_cost}")
|
124 |
+
cost = cb.total_cost
|
125 |
+
|
126 |
+
|
127 |
+
try:
|
128 |
+
# Convert output to dictionary
|
129 |
+
output_dict = json.loads(output)
|
130 |
+
|
131 |
+
# Manually assign the Patent Identifier
|
132 |
+
output_dict["Patent Identifier"] = saved_patent_names[index].split("-")[0]
|
133 |
+
|
134 |
+
|
135 |
+
# Check if the directory 'output' exists, if not create it
|
136 |
+
if not os.path.exists("output"):
|
137 |
+
os.makedirs("output")
|
138 |
+
|
139 |
+
if logging:
|
140 |
+
print("Writing the output to a file...")
|
141 |
+
|
142 |
+
with open(f"output/{saved_patent_names[index]}_{model_name}.json", "w", encoding="utf-8") as json_file:
|
143 |
+
json.dump(output_dict, json_file, indent=4, ensure_ascii=False)
|
144 |
+
|
145 |
+
if logging:
|
146 |
+
print("Call to 'call_QA_to_json' completed.")
|
147 |
+
|
148 |
+
except Exception as e:
|
149 |
+
print("An error occurred while processing the output.")
|
150 |
+
print("Error message:", str(e))
|
151 |
+
|
152 |
+
try:
|
153 |
+
vectordb.delete(ids=["*"])
|
154 |
+
except Exception as e:
|
155 |
+
print(f"Error deleting vector database: {str(e)}")
|
156 |
+
return cost, output
|
157 |
+
|
158 |
+
|
159 |
+
def call_TA_to_json(
|
160 |
+
prompt, year, month, day, saved_patent_names, index=0, logging=True
|
161 |
+
):
|
162 |
+
"""
|
163 |
+
Retrieve text analytics (TA) data from a specified patent file and convert the output to JSON format.
|
164 |
+
This function reads a text document from the patent file specified by the year, month, day, and file name parameters.
|
165 |
+
It then applies a QA retrieval process to the document using the provided prompt.
|
166 |
+
The result of the QA retrieval process is converted to a JSON object, which is then written to a file.
|
167 |
+
Additionally, a patent identifier is manually assigned to the output JSON object.
|
168 |
+
Parameters:
|
169 |
+
prompt (str): The input prompt for the retrieval process.
|
170 |
+
year (int): The year part of the data folder name.
|
171 |
+
month (int): The month part of the data folder name.
|
172 |
+
day (int): The day part of the data folder name.
|
173 |
+
saved_patent_names (list): A list of strings containing the names of saved patent text files.
|
174 |
+
index (int, optional): The index of the saved patent text file to process. Default is 0.
|
175 |
+
logging (bool, optional): If True, print logs to the console. Default is True.
|
176 |
+
Returns:
|
177 |
+
tuple: A tuple containing two elements:
|
178 |
+
- documents_raw (str): The raw document content loaded from the specified patent file.
|
179 |
+
- output (str): A JSON string representing the output from the TA retrieval process.
|
180 |
+
Note:
|
181 |
+
The output is also written to a file in the 'output' directory with the same name as the input file and a '.json' extension.
|
182 |
+
"""
|
183 |
+
|
184 |
+
llm = ChatOpenAI(model_name='gpt-3.5-turbo', cache=False)
|
185 |
+
|
186 |
+
file_path = os.path.join(
|
187 |
+
os.getcwd(),
|
188 |
+
"data",
|
189 |
+
"ipa" + str(year)[2:] + f"{month:02d}" + f"{day:02d}",
|
190 |
+
saved_patent_names[index],
|
191 |
+
)
|
192 |
+
|
193 |
+
if logging:
|
194 |
+
print(f"Loading documents from: {file_path}")
|
195 |
+
|
196 |
+
with open(file_path, 'r') as f:
|
197 |
+
documents_raw = f.read()
|
198 |
+
|
199 |
+
|
200 |
+
PROMPT_FORMAT = """
|
201 |
+
Task: Use the following pieces of context to answer the question at the end.
|
202 |
+
Question:
|
203 |
+
"""
|
204 |
+
|
205 |
+
prompt = PROMPT_FORMAT + prompt
|
206 |
+
|
207 |
+
qa_chain = load_qa_chain(llm, chain_type="map_reduce")
|
208 |
+
|
209 |
+
qa_document_chain = AnalyzeDocumentChain(combine_docs_chain=qa_chain)
|
210 |
+
|
211 |
+
|
212 |
+
if logging:
|
213 |
+
print("Running Analyze Document chain...")
|
214 |
+
|
215 |
+
output = qa_document_chain.run(input_document=documents_raw, question=prompt)
|
216 |
+
|
217 |
+
|
218 |
+
try:
|
219 |
+
# Convert output to dictionary
|
220 |
+
output_dict = json.loads(output)
|
221 |
+
|
222 |
+
# Manually assign the Patent Identifier
|
223 |
+
output_dict["Patent Identifier"] = saved_patent_names[index].split("-")[0]
|
224 |
+
|
225 |
+
|
226 |
+
# Check if the directory 'output' exists, if not create it
|
227 |
+
if not os.path.exists("output"):
|
228 |
+
os.makedirs("output")
|
229 |
+
|
230 |
+
if logging:
|
231 |
+
print("Writing the output to a file...")
|
232 |
+
|
233 |
+
# Write the output to a file in the 'output' directory
|
234 |
+
with open(f"output/{saved_patent_names[index]}.json", "w", encoding="utf-8") as json_file:
|
235 |
+
json.dump(output_dict, json_file, indent=4, ensure_ascii=False)
|
236 |
+
|
237 |
+
if logging:
|
238 |
+
print("Call to 'call_QA_to_json' completed.")
|
239 |
+
except Exception as e:
|
240 |
+
print("An error occurred while processing the output.")
|
241 |
+
print("Error message:", str(e))
|
242 |
+
return documents_raw, output
|
243 |
+
|
244 |
+
|
245 |
+
|
246 |
+
def call_QA_faiss_to_json(
|
247 |
+
prompt, year, month, day, saved_patent_names, index=0, logging=True, model_name="gpt-3.5-turbo"
|
248 |
+
):
|
249 |
+
"""
|
250 |
+
Generate embeddings from txt documents, retrieve data based on the provided prompt, and return the result as a JSON object.
|
251 |
+
Parameters:
|
252 |
+
prompt (str): The input prompt for the retrieval process.
|
253 |
+
year (int): The year part of the data folder name.
|
254 |
+
month (int): The month part of the data folder name.
|
255 |
+
day (int): The day part of the data folder name.
|
256 |
+
saved_patent_names (list): A list of strings containing the names of saved patent text files.
|
257 |
+
index (int): The index of the saved patent text file to process. Default is 0.
|
258 |
+
logging (bool): The boolean to print logs
|
259 |
+
Returns:
|
260 |
+
tuple: A tuple containing two elements:
|
261 |
+
- A list of strings representing the raw documents loaded from the specified XML file.
|
262 |
+
- A JSON string representing the output from the retrieval chain.
|
263 |
+
This function loads the specified txt file, generates embeddings from its content,
|
264 |
+
and uses a retrieval chain to retrieve data based on the provided prompt.
|
265 |
+
The retrieved data is returned as a JSON object, and the raw documents are returned as a list of strings.
|
266 |
+
The output is also written to a file in the 'output' directory with the name '{count}.json'.
|
267 |
+
"""
|
268 |
+
|
269 |
+
llm = ChatOpenAI(model_name=model_name, cache=False)
|
270 |
+
chain = load_qa_chain(llm, chain_type="stuff")
|
271 |
+
|
272 |
+
file_path = os.path.join(
|
273 |
+
os.getcwd(),
|
274 |
+
"data",
|
275 |
+
"ipa" + str(year)[2:] + f"{month:02d}" + f"{day:02d}",
|
276 |
+
saved_patent_names[index],
|
277 |
+
)
|
278 |
+
|
279 |
+
if logging:
|
280 |
+
print(f"Loading documents from: {file_path}")
|
281 |
+
loader = TextLoader(file_path)
|
282 |
+
documents_raw = loader.load()
|
283 |
+
|
284 |
+
text_splitter = CharacterTextSplitter(chunk_size=500, chunk_overlap=0)
|
285 |
+
|
286 |
+
documents = text_splitter.split_documents(documents_raw)
|
287 |
+
|
288 |
+
|
289 |
+
|
290 |
+
docsearch = FAISS.from_documents(documents, embeddings)
|
291 |
+
|
292 |
+
|
293 |
+
docs = docsearch.similarity_search(prompt)
|
294 |
+
|
295 |
+
|
296 |
+
if logging:
|
297 |
+
print("Running chain...")
|
298 |
+
|
299 |
+
with get_openai_callback() as cb:
|
300 |
+
output = chain.run(input_documents=docs, question=prompt)
|
301 |
+
print(f"Total Tokens: {cb.total_tokens}")
|
302 |
+
print(f"Prompt Tokens: {cb.prompt_tokens}")
|
303 |
+
print(f"Completion Tokens: {cb.completion_tokens}")
|
304 |
+
print(f"Successful Requests: {cb.successful_requests}")
|
305 |
+
print(f"Total Cost (USD): ${cb.total_cost}")
|
306 |
+
|
307 |
+
try:
|
308 |
+
# Convert output to dictionary
|
309 |
+
output_dict = json.loads(output)
|
310 |
+
|
311 |
+
# Manually assign the Patent Identifier
|
312 |
+
output_dict["Patent Identifier"] = saved_patent_names[index].split("-")[0]
|
313 |
+
|
314 |
+
# Check if the directory 'output' exists, if not create it
|
315 |
+
if not os.path.exists("output"):
|
316 |
+
os.makedirs("output")
|
317 |
+
|
318 |
+
if logging:
|
319 |
+
print("Writing the output to a file...")
|
320 |
+
|
321 |
+
# Write the output to a file in the 'output' directory
|
322 |
+
with open(f"output/{saved_patent_names[index]}_{model_name}.json", "w", encoding="utf-8") as json_file:
|
323 |
+
json.dump(output_dict, json_file, indent=4, ensure_ascii=False)
|
324 |
+
|
325 |
+
if logging:
|
326 |
+
print("Call to 'call_QA_to_json' completed.")
|
327 |
+
|
328 |
+
except Exception as e:
|
329 |
+
print("An error occurred while processing the output.")
|
330 |
+
print("Error message:", str(e))
|
331 |
+
|
332 |
+
docsearch.delete
|
333 |
+
return output
|