Spaces:
Sleeping
Sleeping
mrfakename
commited on
Sync from GitHub repo
Browse filesThis Space is synced from the GitHub repo: https://github.com/SWivid/F5-TTS. Please submit contributions to the Space there
- inference-cli.py +33 -32
inference-cli.py
CHANGED
@@ -175,6 +175,32 @@ F5TTS_model_cfg = dict(
|
|
175 |
)
|
176 |
E2TTS_model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4)
|
177 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
178 |
def chunk_text(text, max_chars=135):
|
179 |
"""
|
180 |
Splits the input text into chunks, each with a maximum number of characters.
|
@@ -206,26 +232,7 @@ def chunk_text(text, max_chars=135):
|
|
206 |
#if not Path(ckpt_path).exists():
|
207 |
#ckpt_path = str(cached_path(f"hf://SWivid/{repo_name}/{exp_name}/model_{ckpt_step}.safetensors"))
|
208 |
|
209 |
-
def infer_batch(ref_audio, ref_text, gen_text_batches, model,
|
210 |
-
if model == "F5-TTS":
|
211 |
-
|
212 |
-
if ckpt_file == "":
|
213 |
-
repo_name= "F5-TTS"
|
214 |
-
exp_name = "F5TTS_Base"
|
215 |
-
ckpt_step= 1200000
|
216 |
-
ckpt_file = str(cached_path(f"hf://SWivid/{repo_name}/{exp_name}/model_{ckpt_step}.safetensors"))
|
217 |
-
|
218 |
-
ema_model = load_model(DiT, F5TTS_model_cfg, ckpt_file,file_vocab)
|
219 |
-
|
220 |
-
elif model == "E2-TTS":
|
221 |
-
if ckpt_file == "":
|
222 |
-
repo_name= "E2-TTS"
|
223 |
-
exp_name = "E2TTS_Base"
|
224 |
-
ckpt_step= 1200000
|
225 |
-
ckpt_file = str(cached_path(f"hf://SWivid/{repo_name}/{exp_name}/model_{ckpt_step}.safetensors"))
|
226 |
-
|
227 |
-
ema_model = load_model(UNetT, E2TTS_model_cfg, ckpt_file,file_vocab)
|
228 |
-
|
229 |
audio, sr = ref_audio
|
230 |
if audio.shape[0] > 1:
|
231 |
audio = torch.mean(audio, dim=0, keepdim=True)
|
@@ -342,13 +349,7 @@ def process_voice(ref_audio_orig, ref_text):
|
|
342 |
|
343 |
if not ref_text.strip():
|
344 |
print("No reference text provided, transcribing reference audio...")
|
345 |
-
|
346 |
-
"automatic-speech-recognition",
|
347 |
-
model="openai/whisper-large-v3-turbo",
|
348 |
-
torch_dtype=torch.float16,
|
349 |
-
device=device,
|
350 |
-
)
|
351 |
-
ref_text = pipe(
|
352 |
ref_audio,
|
353 |
chunk_length_s=30,
|
354 |
batch_size=128,
|
@@ -360,7 +361,7 @@ def process_voice(ref_audio_orig, ref_text):
|
|
360 |
print("Using custom reference text...")
|
361 |
return ref_audio, ref_text
|
362 |
|
363 |
-
def infer(ref_audio, ref_text, gen_text, model,
|
364 |
# Add the functionality to ensure it ends with ". "
|
365 |
if not ref_text.endswith(". ") and not ref_text.endswith("。"):
|
366 |
if ref_text.endswith("."):
|
@@ -376,10 +377,10 @@ def infer(ref_audio, ref_text, gen_text, model,ckpt_file,file_vocab, remove_sile
|
|
376 |
print(f'gen_text {i}', gen_text)
|
377 |
|
378 |
print(f"Generating audio using {model} in {len(gen_text_batches)} batches, loading models...")
|
379 |
-
return infer_batch((audio, sr), ref_text, gen_text_batches, model,
|
380 |
|
381 |
|
382 |
-
def process(ref_audio, ref_text, text_gen, model,
|
383 |
main_voice = {"ref_audio":ref_audio, "ref_text":ref_text}
|
384 |
if "voices" not in config:
|
385 |
voices = {"main": main_voice}
|
@@ -407,7 +408,7 @@ def process(ref_audio, ref_text, text_gen, model,ckpt_file,file_vocab, remove_si
|
|
407 |
ref_audio = voices[voice]['ref_audio']
|
408 |
ref_text = voices[voice]['ref_text']
|
409 |
print(f"Voice: {voice}")
|
410 |
-
audio, spectragram = infer(ref_audio, ref_text, gen_text, model,
|
411 |
generated_audio_segments.append(audio)
|
412 |
|
413 |
if generated_audio_segments:
|
@@ -426,4 +427,4 @@ def process(ref_audio, ref_text, text_gen, model,ckpt_file,file_vocab, remove_si
|
|
426 |
print(f.name)
|
427 |
|
428 |
|
429 |
-
process(ref_audio, ref_text, gen_text, model,
|
|
|
175 |
)
|
176 |
E2TTS_model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4)
|
177 |
|
178 |
+
if model == "F5-TTS":
|
179 |
+
|
180 |
+
if ckpt_file == "":
|
181 |
+
repo_name= "F5-TTS"
|
182 |
+
exp_name = "F5TTS_Base"
|
183 |
+
ckpt_step= 1200000
|
184 |
+
ckpt_file = str(cached_path(f"hf://SWivid/{repo_name}/{exp_name}/model_{ckpt_step}.safetensors"))
|
185 |
+
|
186 |
+
ema_model = load_model(DiT, F5TTS_model_cfg, ckpt_file,vocab_file)
|
187 |
+
|
188 |
+
elif model == "E2-TTS":
|
189 |
+
if ckpt_file == "":
|
190 |
+
repo_name= "E2-TTS"
|
191 |
+
exp_name = "E2TTS_Base"
|
192 |
+
ckpt_step= 1200000
|
193 |
+
ckpt_file = str(cached_path(f"hf://SWivid/{repo_name}/{exp_name}/model_{ckpt_step}.safetensors"))
|
194 |
+
|
195 |
+
ema_model = load_model(UNetT, E2TTS_model_cfg, ckpt_file,vocab_file)
|
196 |
+
|
197 |
+
asr_pipe = pipeline(
|
198 |
+
"automatic-speech-recognition",
|
199 |
+
model="openai/whisper-large-v3-turbo",
|
200 |
+
torch_dtype=torch.float16,
|
201 |
+
device=device,
|
202 |
+
)
|
203 |
+
|
204 |
def chunk_text(text, max_chars=135):
|
205 |
"""
|
206 |
Splits the input text into chunks, each with a maximum number of characters.
|
|
|
232 |
#if not Path(ckpt_path).exists():
|
233 |
#ckpt_path = str(cached_path(f"hf://SWivid/{repo_name}/{exp_name}/model_{ckpt_step}.safetensors"))
|
234 |
|
235 |
+
def infer_batch(ref_audio, ref_text, gen_text_batches, model, remove_silence, cross_fade_duration=0.15):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
236 |
audio, sr = ref_audio
|
237 |
if audio.shape[0] > 1:
|
238 |
audio = torch.mean(audio, dim=0, keepdim=True)
|
|
|
349 |
|
350 |
if not ref_text.strip():
|
351 |
print("No reference text provided, transcribing reference audio...")
|
352 |
+
ref_text = asr_pipe(
|
|
|
|
|
|
|
|
|
|
|
|
|
353 |
ref_audio,
|
354 |
chunk_length_s=30,
|
355 |
batch_size=128,
|
|
|
361 |
print("Using custom reference text...")
|
362 |
return ref_audio, ref_text
|
363 |
|
364 |
+
def infer(ref_audio, ref_text, gen_text, model, remove_silence, cross_fade_duration=0.15):
|
365 |
# Add the functionality to ensure it ends with ". "
|
366 |
if not ref_text.endswith(". ") and not ref_text.endswith("。"):
|
367 |
if ref_text.endswith("."):
|
|
|
377 |
print(f'gen_text {i}', gen_text)
|
378 |
|
379 |
print(f"Generating audio using {model} in {len(gen_text_batches)} batches, loading models...")
|
380 |
+
return infer_batch((audio, sr), ref_text, gen_text_batches, model, remove_silence, cross_fade_duration)
|
381 |
|
382 |
|
383 |
+
def process(ref_audio, ref_text, text_gen, model, remove_silence):
|
384 |
main_voice = {"ref_audio":ref_audio, "ref_text":ref_text}
|
385 |
if "voices" not in config:
|
386 |
voices = {"main": main_voice}
|
|
|
408 |
ref_audio = voices[voice]['ref_audio']
|
409 |
ref_text = voices[voice]['ref_text']
|
410 |
print(f"Voice: {voice}")
|
411 |
+
audio, spectragram = infer(ref_audio, ref_text, gen_text, model,remove_silence)
|
412 |
generated_audio_segments.append(audio)
|
413 |
|
414 |
if generated_audio_segments:
|
|
|
427 |
print(f.name)
|
428 |
|
429 |
|
430 |
+
process(ref_audio, ref_text, gen_text, model, remove_silence)
|