Spaces:
Sleeping
Sleeping
File size: 32,049 Bytes
dd217c7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 |
import os
import re
import torch
import torchaudio
import gradio as gr
import numpy as np
import tempfile
from einops import rearrange
from vocos import Vocos
from pydub import AudioSegment, silence
from model import CFM, UNetT, DiT, MMDiT
from cached_path import cached_path
from model.utils import (
load_checkpoint,
get_tokenizer,
convert_char_to_pinyin,
save_spectrogram,
)
from transformers import pipeline
import librosa
import click
import soundfile as sf
try:
import spaces
USING_SPACES = True
except ImportError:
USING_SPACES = False
def gpu_decorator(func):
if USING_SPACES:
return spaces.GPU(func)
else:
return func
SPLIT_WORDS = [
"but", "however", "nevertheless", "yet", "still",
"therefore", "thus", "hence", "consequently",
"moreover", "furthermore", "additionally",
"meanwhile", "alternatively", "otherwise",
"namely", "specifically", "for example", "such as",
"in fact", "indeed", "notably",
"in contrast", "on the other hand", "conversely",
"in conclusion", "to summarize", "finally"
]
device = (
"cuda"
if torch.cuda.is_available()
else "mps" if torch.backends.mps.is_available() else "cpu"
)
print(f"Using {device} device")
pipe = pipeline(
"automatic-speech-recognition",
model="openai/whisper-large-v3-turbo",
torch_dtype=torch.float16,
device=device,
)
vocos = Vocos.from_pretrained("charactr/vocos-mel-24khz")
# --------------------- Settings -------------------- #
target_sample_rate = 24000
n_mel_channels = 100
hop_length = 256
target_rms = 0.1
nfe_step = 32 # 16, 32
cfg_strength = 2.0
ode_method = "euler"
sway_sampling_coef = -1.0
speed = 1.0
# fix_duration = 27 # None or float (duration in seconds)
fix_duration = None
def load_model(repo_name, exp_name, model_cls, model_cfg, ckpt_step):
ckpt_path = str(cached_path(f"hf://SWivid/{repo_name}/{exp_name}/model_{ckpt_step}.safetensors"))
# ckpt_path = f"ckpts/{exp_name}/model_{ckpt_step}.pt" # .pt | .safetensors
vocab_char_map, vocab_size = get_tokenizer("Emilia_ZH_EN", "pinyin")
model = CFM(
transformer=model_cls(
**model_cfg, text_num_embeds=vocab_size, mel_dim=n_mel_channels
),
mel_spec_kwargs=dict(
target_sample_rate=target_sample_rate,
n_mel_channels=n_mel_channels,
hop_length=hop_length,
),
odeint_kwargs=dict(
method=ode_method,
),
vocab_char_map=vocab_char_map,
).to(device)
model = load_checkpoint(model, ckpt_path, device, use_ema = True)
return model
# load models
F5TTS_model_cfg = dict(
dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4
)
E2TTS_model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4)
F5TTS_ema_model = load_model(
"F5-TTS", "F5TTS_Base", DiT, F5TTS_model_cfg, 1200000
)
E2TTS_ema_model = load_model(
"E2-TTS", "E2TTS_Base", UNetT, E2TTS_model_cfg, 1200000
)
def split_text_into_batches(text, max_chars=200, split_words=SPLIT_WORDS):
if len(text.encode('utf-8')) <= max_chars:
return [text]
if text[-1] not in ['。', '.', '!', '!', '?', '?']:
text += '.'
sentences = re.split('([。.!?!?])', text)
sentences = [''.join(i) for i in zip(sentences[0::2], sentences[1::2])]
batches = []
current_batch = ""
def split_by_words(text):
words = text.split()
current_word_part = ""
word_batches = []
for word in words:
if len(current_word_part.encode('utf-8')) + len(word.encode('utf-8')) + 1 <= max_chars:
current_word_part += word + ' '
else:
if current_word_part:
# Try to find a suitable split word
for split_word in split_words:
split_index = current_word_part.rfind(' ' + split_word + ' ')
if split_index != -1:
word_batches.append(current_word_part[:split_index].strip())
current_word_part = current_word_part[split_index:].strip() + ' '
break
else:
# If no suitable split word found, just append the current part
word_batches.append(current_word_part.strip())
current_word_part = ""
current_word_part += word + ' '
if current_word_part:
word_batches.append(current_word_part.strip())
return word_batches
for sentence in sentences:
if len(current_batch.encode('utf-8')) + len(sentence.encode('utf-8')) <= max_chars:
current_batch += sentence
else:
# If adding this sentence would exceed the limit
if current_batch:
batches.append(current_batch)
current_batch = ""
# If the sentence itself is longer than max_chars, split it
if len(sentence.encode('utf-8')) > max_chars:
# First, try to split by colon
colon_parts = sentence.split(':')
if len(colon_parts) > 1:
for part in colon_parts:
if len(part.encode('utf-8')) <= max_chars:
batches.append(part)
else:
# If colon part is still too long, split by comma
comma_parts = re.split('[,,]', part)
if len(comma_parts) > 1:
current_comma_part = ""
for comma_part in comma_parts:
if len(current_comma_part.encode('utf-8')) + len(comma_part.encode('utf-8')) <= max_chars:
current_comma_part += comma_part + ','
else:
if current_comma_part:
batches.append(current_comma_part.rstrip(','))
current_comma_part = comma_part + ','
if current_comma_part:
batches.append(current_comma_part.rstrip(','))
else:
# If no comma, split by words
batches.extend(split_by_words(part))
else:
# If no colon, split by comma
comma_parts = re.split('[,,]', sentence)
if len(comma_parts) > 1:
current_comma_part = ""
for comma_part in comma_parts:
if len(current_comma_part.encode('utf-8')) + len(comma_part.encode('utf-8')) <= max_chars:
current_comma_part += comma_part + ','
else:
if current_comma_part:
batches.append(current_comma_part.rstrip(','))
current_comma_part = comma_part + ','
if current_comma_part:
batches.append(current_comma_part.rstrip(','))
else:
# If no comma, split by words
batches.extend(split_by_words(sentence))
else:
current_batch = sentence
if current_batch:
batches.append(current_batch)
return batches
def infer_batch(ref_audio, ref_text, gen_text_batches, exp_name, remove_silence, progress=gr.Progress()):
if exp_name == "F5-TTS":
ema_model = F5TTS_ema_model
elif exp_name == "E2-TTS":
ema_model = E2TTS_ema_model
audio, sr = ref_audio
if audio.shape[0] > 1:
audio = torch.mean(audio, dim=0, keepdim=True)
rms = torch.sqrt(torch.mean(torch.square(audio)))
if rms < target_rms:
audio = audio * target_rms / rms
if sr != target_sample_rate:
resampler = torchaudio.transforms.Resample(sr, target_sample_rate)
audio = resampler(audio)
audio = audio.to(device)
generated_waves = []
spectrograms = []
for i, gen_text in enumerate(progress.tqdm(gen_text_batches)):
# Prepare the text
if len(ref_text[-1].encode('utf-8')) == 1:
ref_text = ref_text + " "
text_list = [ref_text + gen_text]
final_text_list = convert_char_to_pinyin(text_list)
# Calculate duration
ref_audio_len = audio.shape[-1] // hop_length
zh_pause_punc = r"。,、;:?!"
ref_text_len = len(ref_text.encode('utf-8')) + 3 * len(re.findall(zh_pause_punc, ref_text))
gen_text_len = len(gen_text.encode('utf-8')) + 3 * len(re.findall(zh_pause_punc, gen_text))
duration = ref_audio_len + int(ref_audio_len / ref_text_len * gen_text_len / speed)
# inference
with torch.inference_mode():
generated, _ = ema_model.sample(
cond=audio,
text=final_text_list,
duration=duration,
steps=nfe_step,
cfg_strength=cfg_strength,
sway_sampling_coef=sway_sampling_coef,
)
generated = generated[:, ref_audio_len:, :]
generated_mel_spec = rearrange(generated, "1 n d -> 1 d n")
generated_wave = vocos.decode(generated_mel_spec.cpu())
if rms < target_rms:
generated_wave = generated_wave * rms / target_rms
# wav -> numpy
generated_wave = generated_wave.squeeze().cpu().numpy()
generated_waves.append(generated_wave)
spectrograms.append(generated_mel_spec[0].cpu().numpy())
# Combine all generated waves
final_wave = np.concatenate(generated_waves)
# Remove silence
if remove_silence:
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f:
sf.write(f.name, final_wave, target_sample_rate)
aseg = AudioSegment.from_file(f.name)
non_silent_segs = silence.split_on_silence(aseg, min_silence_len=1000, silence_thresh=-50, keep_silence=500)
non_silent_wave = AudioSegment.silent(duration=0)
for non_silent_seg in non_silent_segs:
non_silent_wave += non_silent_seg
aseg = non_silent_wave
aseg.export(f.name, format="wav")
final_wave, _ = torchaudio.load(f.name)
final_wave = final_wave.squeeze().cpu().numpy()
# Create a combined spectrogram
combined_spectrogram = np.concatenate(spectrograms, axis=1)
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp_spectrogram:
spectrogram_path = tmp_spectrogram.name
save_spectrogram(combined_spectrogram, spectrogram_path)
return (target_sample_rate, final_wave), spectrogram_path
def infer(ref_audio_orig, ref_text, gen_text, exp_name, remove_silence, custom_split_words=''):
if not custom_split_words.strip():
custom_words = [word.strip() for word in custom_split_words.split(',')]
global SPLIT_WORDS
SPLIT_WORDS = custom_words
print(gen_text)
gr.Info("Converting audio...")
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f:
aseg = AudioSegment.from_file(ref_audio_orig)
non_silent_segs = silence.split_on_silence(aseg, min_silence_len=1000, silence_thresh=-50, keep_silence=500)
non_silent_wave = AudioSegment.silent(duration=0)
for non_silent_seg in non_silent_segs:
non_silent_wave += non_silent_seg
aseg = non_silent_wave
audio_duration = len(aseg)
if audio_duration > 15000:
gr.Warning("Audio is over 15s, clipping to only first 15s.")
aseg = aseg[:15000]
aseg.export(f.name, format="wav")
ref_audio = f.name
if not ref_text.strip():
gr.Info("No reference text provided, transcribing reference audio...")
ref_text = pipe(
ref_audio,
chunk_length_s=30,
batch_size=128,
generate_kwargs={"task": "transcribe"},
return_timestamps=False,
)["text"].strip()
gr.Info("Finished transcription")
else:
gr.Info("Using custom reference text...")
# Split the input text into batches
audio, sr = torchaudio.load(ref_audio)
max_chars = int(len(ref_text.encode('utf-8')) / (audio.shape[-1] / sr) * (30 - audio.shape[-1] / sr))
gen_text_batches = split_text_into_batches(gen_text, max_chars=max_chars)
print('ref_text', ref_text)
for i, gen_text in enumerate(gen_text_batches):
print(f'gen_text {i}', gen_text)
gr.Info(f"Generating audio using {exp_name} in {len(gen_text_batches)} batches")
return infer_batch((audio, sr), ref_text, gen_text_batches, exp_name, remove_silence)
def generate_podcast(script, speaker1_name, ref_audio1, ref_text1, speaker2_name, ref_audio2, ref_text2, exp_name, remove_silence):
# Split the script into speaker blocks
speaker_pattern = re.compile(f"^({re.escape(speaker1_name)}|{re.escape(speaker2_name)}):", re.MULTILINE)
speaker_blocks = speaker_pattern.split(script)[1:] # Skip the first empty element
generated_audio_segments = []
for i in range(0, len(speaker_blocks), 2):
speaker = speaker_blocks[i]
text = speaker_blocks[i+1].strip()
# Determine which speaker is talking
if speaker == speaker1_name:
ref_audio = ref_audio1
ref_text = ref_text1
elif speaker == speaker2_name:
ref_audio = ref_audio2
ref_text = ref_text2
else:
continue # Skip if the speaker is neither speaker1 nor speaker2
# Generate audio for this block
audio, _ = infer(ref_audio, ref_text, text, exp_name, remove_silence)
# Convert the generated audio to a numpy array
sr, audio_data = audio
# Save the audio data as a WAV file
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_file:
sf.write(temp_file.name, audio_data, sr)
audio_segment = AudioSegment.from_wav(temp_file.name)
generated_audio_segments.append(audio_segment)
# Add a short pause between speakers
pause = AudioSegment.silent(duration=500) # 500ms pause
generated_audio_segments.append(pause)
# Concatenate all audio segments
final_podcast = sum(generated_audio_segments)
# Export the final podcast
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_file:
podcast_path = temp_file.name
final_podcast.export(podcast_path, format="wav")
return podcast_path
def parse_speechtypes_text(gen_text):
# Pattern to find (Emotion)
pattern = r'\((.*?)\)'
# Split the text by the pattern
tokens = re.split(pattern, gen_text)
segments = []
current_emotion = 'Regular'
for i in range(len(tokens)):
if i % 2 == 0:
# This is text
text = tokens[i].strip()
if text:
segments.append({'emotion': current_emotion, 'text': text})
else:
# This is emotion
emotion = tokens[i].strip()
current_emotion = emotion
return segments
def update_speed(new_speed):
global speed
speed = new_speed
return f"Speed set to: {speed}"
with gr.Blocks() as app_credits:
gr.Markdown("""
# Credits
* [mrfakename](https://github.com/fakerybakery) for the original [online demo](https://huggingface.co/spaces/mrfakename/E2-F5-TTS)
* [RootingInLoad](https://github.com/RootingInLoad) for the podcast generation
""")
with gr.Blocks() as app_tts:
gr.Markdown("# Batched TTS")
ref_audio_input = gr.Audio(label="Reference Audio", type="filepath")
gen_text_input = gr.Textbox(label="Text to Generate", lines=10)
model_choice = gr.Radio(
choices=["F5-TTS", "E2-TTS"], label="Choose TTS Model", value="F5-TTS"
)
generate_btn = gr.Button("Synthesize", variant="primary")
with gr.Accordion("Advanced Settings", open=False):
ref_text_input = gr.Textbox(
label="Reference Text",
info="Leave blank to automatically transcribe the reference audio. If you enter text it will override automatic transcription.",
lines=2,
)
remove_silence = gr.Checkbox(
label="Remove Silences",
info="The model tends to produce silences, especially on longer audio. We can manually remove silences if needed. Note that this is an experimental feature and may produce strange results. This will also increase generation time.",
value=True,
)
split_words_input = gr.Textbox(
label="Custom Split Words",
info="Enter custom words to split on, separated by commas. Leave blank to use default list.",
lines=2,
)
speed_slider = gr.Slider(
label="Speed",
minimum=0.3,
maximum=2.0,
value=speed,
step=0.1,
info="Adjust the speed of the audio.",
)
speed_slider.change(update_speed, inputs=speed_slider)
audio_output = gr.Audio(label="Synthesized Audio")
spectrogram_output = gr.Image(label="Spectrogram")
generate_btn.click(
infer,
inputs=[
ref_audio_input,
ref_text_input,
gen_text_input,
model_choice,
remove_silence,
split_words_input,
],
outputs=[audio_output, spectrogram_output],
)
with gr.Blocks() as app_podcast:
gr.Markdown("# Podcast Generation")
speaker1_name = gr.Textbox(label="Speaker 1 Name")
ref_audio_input1 = gr.Audio(label="Reference Audio (Speaker 1)", type="filepath")
ref_text_input1 = gr.Textbox(label="Reference Text (Speaker 1)", lines=2)
speaker2_name = gr.Textbox(label="Speaker 2 Name")
ref_audio_input2 = gr.Audio(label="Reference Audio (Speaker 2)", type="filepath")
ref_text_input2 = gr.Textbox(label="Reference Text (Speaker 2)", lines=2)
script_input = gr.Textbox(label="Podcast Script", lines=10,
placeholder="Enter the script with speaker names at the start of each block, e.g.:\nSean: How did you start studying...\n\nMeghan: I came to my interest in technology...\nIt was a long journey...\n\nSean: That's fascinating. Can you elaborate...")
podcast_model_choice = gr.Radio(
choices=["F5-TTS", "E2-TTS"], label="Choose TTS Model", value="F5-TTS"
)
podcast_remove_silence = gr.Checkbox(
label="Remove Silences",
value=True,
)
generate_podcast_btn = gr.Button("Generate Podcast", variant="primary")
podcast_output = gr.Audio(label="Generated Podcast")
def podcast_generation(script, speaker1, ref_audio1, ref_text1, speaker2, ref_audio2, ref_text2, model, remove_silence):
return generate_podcast(script, speaker1, ref_audio1, ref_text1, speaker2, ref_audio2, ref_text2, model, remove_silence)
generate_podcast_btn.click(
podcast_generation,
inputs=[
script_input,
speaker1_name,
ref_audio_input1,
ref_text_input1,
speaker2_name,
ref_audio_input2,
ref_text_input2,
podcast_model_choice,
podcast_remove_silence,
],
outputs=podcast_output,
)
def parse_emotional_text(gen_text):
# Pattern to find (Emotion)
pattern = r'\((.*?)\)'
# Split the text by the pattern
tokens = re.split(pattern, gen_text)
segments = []
current_emotion = 'Regular'
for i in range(len(tokens)):
if i % 2 == 0:
# This is text
text = tokens[i].strip()
if text:
segments.append({'emotion': current_emotion, 'text': text})
else:
# This is emotion
emotion = tokens[i].strip()
current_emotion = emotion
return segments
with gr.Blocks() as app_emotional:
# New section for emotional generation
gr.Markdown(
"""
# Multiple Speech-Type Generation
This section allows you to upload different audio clips for each speech type. 'Regular' emotion is mandatory. You can add additional speech types by clicking the "Add Speech Type" button. Enter your text in the format shown below, and the system will generate speech using the appropriate emotions. If unspecified, the model will use the regular speech type. The current speech type will be used until the next speech type is specified.
**Example Input:**
(Regular) Hello, I'd like to order a sandwich please. (Surprised) What do you mean you're out of bread? (Sad) I really wanted a sandwich though... (Angry) You know what, darn you and your little shop, you suck! (Whisper) I'll just go back home and cry now. (Shouting) Why me?!
"""
)
gr.Markdown("Upload different audio clips for each speech type. 'Regular' emotion is mandatory. You can add additional speech types by clicking the 'Add Speech Type' button.")
# Regular speech type (mandatory)
with gr.Row():
regular_name = gr.Textbox(value='Regular', label='Speech Type Name', interactive=False)
regular_audio = gr.Audio(label='Regular Reference Audio', type='filepath')
regular_ref_text = gr.Textbox(label='Reference Text (Regular)', lines=2)
# Additional speech types (up to 9 more)
max_speech_types = 10
speech_type_names = []
speech_type_audios = []
speech_type_ref_texts = []
speech_type_delete_btns = []
for i in range(max_speech_types - 1):
with gr.Row():
name_input = gr.Textbox(label='Speech Type Name', visible=False)
audio_input = gr.Audio(label='Reference Audio', type='filepath', visible=False)
ref_text_input = gr.Textbox(label='Reference Text', lines=2, visible=False)
delete_btn = gr.Button("Delete", variant="secondary", visible=False)
speech_type_names.append(name_input)
speech_type_audios.append(audio_input)
speech_type_ref_texts.append(ref_text_input)
speech_type_delete_btns.append(delete_btn)
# Button to add speech type
add_speech_type_btn = gr.Button("Add Speech Type")
# Keep track of current number of speech types
speech_type_count = gr.State(value=0)
# Function to add a speech type
def add_speech_type_fn(speech_type_count):
if speech_type_count < max_speech_types - 1:
speech_type_count += 1
# Prepare updates for the components
name_updates = []
audio_updates = []
ref_text_updates = []
delete_btn_updates = []
for i in range(max_speech_types - 1):
if i < speech_type_count:
name_updates.append(gr.update(visible=True))
audio_updates.append(gr.update(visible=True))
ref_text_updates.append(gr.update(visible=True))
delete_btn_updates.append(gr.update(visible=True))
else:
name_updates.append(gr.update())
audio_updates.append(gr.update())
ref_text_updates.append(gr.update())
delete_btn_updates.append(gr.update())
else:
# Optionally, show a warning
# gr.Warning("Maximum number of speech types reached.")
name_updates = [gr.update() for _ in range(max_speech_types - 1)]
audio_updates = [gr.update() for _ in range(max_speech_types - 1)]
ref_text_updates = [gr.update() for _ in range(max_speech_types - 1)]
delete_btn_updates = [gr.update() for _ in range(max_speech_types - 1)]
return [speech_type_count] + name_updates + audio_updates + ref_text_updates + delete_btn_updates
add_speech_type_btn.click(
add_speech_type_fn,
inputs=speech_type_count,
outputs=[speech_type_count] + speech_type_names + speech_type_audios + speech_type_ref_texts + speech_type_delete_btns
)
# Function to delete a speech type
def make_delete_speech_type_fn(index):
def delete_speech_type_fn(speech_type_count):
# Prepare updates
name_updates = []
audio_updates = []
ref_text_updates = []
delete_btn_updates = []
for i in range(max_speech_types - 1):
if i == index:
name_updates.append(gr.update(visible=False, value=''))
audio_updates.append(gr.update(visible=False, value=None))
ref_text_updates.append(gr.update(visible=False, value=''))
delete_btn_updates.append(gr.update(visible=False))
else:
name_updates.append(gr.update())
audio_updates.append(gr.update())
ref_text_updates.append(gr.update())
delete_btn_updates.append(gr.update())
speech_type_count = max(0, speech_type_count - 1)
return [speech_type_count] + name_updates + audio_updates + ref_text_updates + delete_btn_updates
return delete_speech_type_fn
for i, delete_btn in enumerate(speech_type_delete_btns):
delete_fn = make_delete_speech_type_fn(i)
delete_btn.click(
delete_fn,
inputs=speech_type_count,
outputs=[speech_type_count] + speech_type_names + speech_type_audios + speech_type_ref_texts + speech_type_delete_btns
)
# Text input for the prompt
gen_text_input_emotional = gr.Textbox(label="Text to Generate", lines=10)
# Model choice
model_choice_emotional = gr.Radio(
choices=["F5-TTS", "E2-TTS"], label="Choose TTS Model", value="F5-TTS"
)
with gr.Accordion("Advanced Settings", open=False):
remove_silence_emotional = gr.Checkbox(
label="Remove Silences",
value=True,
)
# Generate button
generate_emotional_btn = gr.Button("Generate Emotional Speech", variant="primary")
# Output audio
audio_output_emotional = gr.Audio(label="Synthesized Audio")
def generate_emotional_speech(
regular_audio,
regular_ref_text,
gen_text,
*args,
):
num_additional_speech_types = max_speech_types - 1
speech_type_names_list = args[:num_additional_speech_types]
speech_type_audios_list = args[num_additional_speech_types:2 * num_additional_speech_types]
speech_type_ref_texts_list = args[2 * num_additional_speech_types:3 * num_additional_speech_types]
model_choice = args[3 * num_additional_speech_types]
remove_silence = args[3 * num_additional_speech_types + 1]
# Collect the speech types and their audios into a dict
speech_types = {'Regular': {'audio': regular_audio, 'ref_text': regular_ref_text}}
for name_input, audio_input, ref_text_input in zip(speech_type_names_list, speech_type_audios_list, speech_type_ref_texts_list):
if name_input and audio_input:
speech_types[name_input] = {'audio': audio_input, 'ref_text': ref_text_input}
# Parse the gen_text into segments
segments = parse_speechtypes_text(gen_text)
# For each segment, generate speech
generated_audio_segments = []
current_emotion = 'Regular'
for segment in segments:
emotion = segment['emotion']
text = segment['text']
if emotion in speech_types:
current_emotion = emotion
else:
# If emotion not available, default to Regular
current_emotion = 'Regular'
ref_audio = speech_types[current_emotion]['audio']
ref_text = speech_types[current_emotion].get('ref_text', '')
# Generate speech for this segment
audio, _ = infer(ref_audio, ref_text, text, model_choice, remove_silence, "")
sr, audio_data = audio
generated_audio_segments.append(audio_data)
# Concatenate all audio segments
if generated_audio_segments:
final_audio_data = np.concatenate(generated_audio_segments)
return (sr, final_audio_data)
else:
gr.Warning("No audio generated.")
return None
generate_emotional_btn.click(
generate_emotional_speech,
inputs=[
regular_audio,
regular_ref_text,
gen_text_input_emotional,
] + speech_type_names + speech_type_audios + speech_type_ref_texts + [
model_choice_emotional,
remove_silence_emotional,
],
outputs=audio_output_emotional,
)
# Validation function to disable Generate button if speech types are missing
def validate_speech_types(
gen_text,
regular_name,
*args
):
num_additional_speech_types = max_speech_types - 1
speech_type_names_list = args[:num_additional_speech_types]
# Collect the speech types names
speech_types_available = set()
if regular_name:
speech_types_available.add(regular_name)
for name_input in speech_type_names_list:
if name_input:
speech_types_available.add(name_input)
# Parse the gen_text to get the speech types used
segments = parse_emotional_text(gen_text)
speech_types_in_text = set(segment['emotion'] for segment in segments)
# Check if all speech types in text are available
missing_speech_types = speech_types_in_text - speech_types_available
if missing_speech_types:
# Disable the generate button
return gr.update(interactive=False)
else:
# Enable the generate button
return gr.update(interactive=True)
gen_text_input_emotional.change(
validate_speech_types,
inputs=[gen_text_input_emotional, regular_name] + speech_type_names,
outputs=generate_emotional_btn
)
with gr.Blocks() as app:
gr.Markdown(
"""
# E2/F5 TTS
This is a local web UI for F5 TTS with advanced batch processing support. This app supports the following TTS models:
* [F5-TTS](https://arxiv.org/abs/2410.06885) (A Fairytaler that Fakes Fluent and Faithful Speech with Flow Matching)
* [E2 TTS](https://arxiv.org/abs/2406.18009) (Embarrassingly Easy Fully Non-Autoregressive Zero-Shot TTS)
The checkpoints support English and Chinese.
If you're having issues, try converting your reference audio to WAV or MP3, clipping it to 15s, and shortening your prompt.
**NOTE: Reference text will be automatically transcribed with Whisper if not provided. For best results, keep your reference clips short (<15s). Ensure the audio is fully uploaded before generating.**
"""
)
gr.TabbedInterface([app_tts, app_podcast, app_emotional, app_credits], ["TTS", "Podcast", "Multi-Style", "Credits"])
@click.command()
@click.option("--port", "-p", default=None, type=int, help="Port to run the app on")
@click.option("--host", "-H", default=None, help="Host to run the app on")
@click.option(
"--share",
"-s",
default=False,
is_flag=True,
help="Share the app via Gradio share link",
)
@click.option("--api", "-a", default=True, is_flag=True, help="Allow API access")
def main(port, host, share, api):
global app
print(f"Starting app...")
app.queue(api_open=api).launch(
server_name=host, server_port=port, share=share, show_api=api
)
if __name__ == "__main__":
main()
|