base_model: mistralai/Mixtral-8x7B-v0.1 model_type: AutoModelForCausalLM tokenizer_type: LlamaTokenizer trust_remote_code: true load_in_8bit: false load_in_4bit: true strict: false datasets: - path: tatsu-lab/alpaca type: alpaca dataset_prepared_path: last_run_prepared val_set_size: 0.0 output_dir: ./outputs/qlora-out ## You can optionally freeze the entire model and unfreeze a subset of parameters unfrozen_parameters: # - ^lm_head.weight$ # - ^model.embed_tokens.weight$[:32000] # - model.layers.2[0-9]+.block_sparse_moe.gate # - model.layers.2[0-9]+.block_sparse_moe.experts # - model.layers.3[0-9]+.block_sparse_moe.gate # - model.layers.3[0-9]+.block_sparse_moe.experts model_config: output_router_logits: true adapter: qlora lora_model_dir: sequence_len: 4096 sample_packing: true pad_to_sequence_len: true lora_r: 32 lora_alpha: 16 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: #lora_target_modules: # - gate # - q_proj # - k_proj # - v_proj # - o_proj # - w1 # - w2 # - w3 wandb_project: wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 2 micro_batch_size: 1 num_epochs: 1 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true loss_watchdog_threshold: 5.0 loss_watchdog_patience: 3 warmup_steps: 10 evals_per_epoch: 4 eval_table_size: eval_max_new_tokens: 128 saves_per_epoch: 1 debug: deepspeed: deepspeed_configs/zero2.json weight_decay: 0.0 fsdp: fsdp_config: special_tokens: