import copy import dataclasses import logging from enum import auto, Enum from typing import List, Tuple, Any, Union, Generator IGNORE_TOKEN_ID = -100 class PromptStyle(Enum): instruct = "instruct" chat = "chat" class AlpacaPrompter: system_prompt = "Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.\n\n" system_no_input_prompt = "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n" prompt_style = None def __init__(self, prompt_style="instruct"): self.prompt_style = prompt_style if prompt_style else PromptStyle.instruct.value self.match_prompt_style() def match_prompt_style(self): if self.prompt_style == PromptStyle.instruct.value: self.prompt_input = ( self.system_prompt + "### Instruction:\n{instruction}\n\n### Input:\n{input}\n\n### Response:\n" ) self.prompt_no_input = ( self.system_no_input_prompt + "### Instruction:\n{instruction}\n\n### Response:\n" ) self.response_split = "### Response:" if self.prompt_style == PromptStyle.chat.value: self.prompt_input = ( self.system_prompt + "USER: {instruction}\n{input}\nASSISTANT:" ) self.prompt_no_input = ( self.system_no_input_prompt + "USER: {instruction}\nASSISTANT:" ) self.response_split = "ASSISTANT:" def build_prompt( self, instruction: str, input: Union[None, str] = None, output: Union[None, str] = None, ) -> Generator[str, None, None]: # returns the full prompt from instruction and optional input # if a label (=response, =output) is provided, it's also appended. if input: res = self.prompt_input.format(instruction=instruction, input=input) else: res = self.prompt_no_input.format(instruction=instruction) if output: res = f"{res}{output}" yield res def get_response(self, output: str) -> str: return output.split(self.response_split)[1].strip() class UnpromptedPrompter(AlpacaPrompter): system_prompt = "" system_no_input_prompt = "" class JeopardyPrompter(AlpacaPrompter): prompt_input = "Below is a Jeopardy clue paired with input providing the category of the clue. Write a concise response that best answers tbe clue given the category.\n\n### Instruction:\n{instruction}\n\n### Input:\n{input}\n\n### Response:\n" class MultipleChoiceExplainPrompter(AlpacaPrompter): system_prompt = ( "Choose the answer that best answers the question. Explain your reasoning." ) class MultipleChoiceConcisePrompter(AlpacaPrompter): prompt_input = "Choose the answer that best answers the question. Be concise in your response.\n\nUSER: {instruction}\n{input}\nASSISTANT:\n" class SummarizeTLDRPrompter(AlpacaPrompter): prompt_no_input = ( "USER: Summarize the following article as a TL;DR.\n{instruction}\nASSISTANT:" ) class CompletionPrompter(AlpacaPrompter): def build_prompt( self, instruction: str, input=None, output=None ) -> Generator[str, None, None]: yield instruction def get_response(self, output: str) -> str: return output.strip() class GPTeacherPrompter(AlpacaPrompter): ... class NomicGPT4AllPrompter(AlpacaPrompter): ... class ReflectAlpacaPrompter: system_prompt = "Below is an instruction that describes a task, paired with an input that provides further context. You, the Assistant, should generate a response as if it were an abstract for an academic or technical paper on the query along with a methodology. Then generate an Agent Reflection where you create a long form response as if from subject matter expert, be verbose, diligent, and creative in your application of knowledge, apply it through the lens of the response generated by the assistant. Look for flawed reasoning, faulty logic, or other mistakes in the method. Finally, generate a final response and method for the user with the Assistant abstract and Reflection analysis as augmentations to the generation\n\n" system_no_input_prompt = "Below is an instruction that describes a task. You, the Assistant, should generate a response as if it were an abstract for an academic or technical paper on the query along with a methodology. Then generate an Agent Reflection where you create a long form response as if from subject matter expert, be verbose, diligent, and creative in your application of knowledge, apply it through the lens of the response generated by the assistant. Look for flawed reasoning, faulty logic, or other mistakes in the method. Finally, generate a final response and method for the user with the Assistant abstract and Reflection analysis as augmentations to the generation\n\n" prompt_input = ( "### Instruction:\n{instruction}\n\n### Input:\n{input}\n\n### Response:\n" ) prompt_no_input = "### Instruction:\n{instruction}\n\n### Response:\n" agent_label = "### Thought:\n{output}\n\n### Agent Reflection:\n{reflection}\n\n### Final Response:\n{corrected}" response_split = "### Response:" def __init__(self, prompt_style="instruct"): self.prompt_style = prompt_style self.match_prompt_style() def match_prompt_style(self): if self.prompt_style == PromptStyle.instruct.value: self.prompt_input = ( self.system_prompt + "### Instruction:\n{instruction}\n\n### Input:\n{input}\n\n### Response:\n" ) self.prompt_no_input = ( self.system_no_input_prompt + "### Instruction:\n{instruction}\n\n### Response:\n" ) self.agent_label = "### Thought:\n{output}\n\n### Agent Reflection:\n{reflection}\n\n### Final Response:\n{corrected}" self.response_split = "### Final Response:" if self.prompt_style == PromptStyle.chat.value: self.prompt_input = ( self.system_prompt + "USER: {instruction}\n{input}\nASSISTANT:" ) self.prompt_no_input = ( self.system_no_input_prompt + "USER: {instruction}\nASSISTANT:" ) self.agent_label = ( "\nTHOUGHT: {output}\nASSISTANT REFLECTION: {reflection}\nASSISTANT:" ) self.response_split = "ASSISTANT:" def build_prompt( self, instruction: str, input: Union[None, str] = None, output: Union[None, str] = None, reflection: Union[None, str] = None, corrected: Union[None, str] = None, ) -> Generator[str, None, None]: # returns the full prompt from instruction and optional input # if a label (=response, =output) is provided, it's also appended. if input: res = self.prompt_input.format(instruction=instruction, input=input) else: res = self.prompt_no_input.format(instruction=instruction) if output and reflection and corrected: label = self.agent_label.format( output=output, reflection=reflection, corrected=corrected ) res = f"{res}{label}" yield res def get_response(self, output: str) -> str: return output.split(self.response_split)[1].strip() class SeparatorStyle(Enum): """Different separator style.""" SINGLE = auto() TWO = auto() DOLLY = auto() # TODO clean this 💩 up @dataclasses.dataclass class Conversation: """A class that keeps all conversation history.""" system: str roles: List[str] messages: List[List[str]] offset: int sep_style: SeparatorStyle = SeparatorStyle.SINGLE sep: str = "###" sep2: str = None def get_prompt(self) -> Generator[str, None, None]: seps = [self.sep, self.sep2] preamble = self.system + seps[0] yield preamble for i, (role, message) in enumerate(self.messages): if message: yield (role + ":", " " + message) else: logging.warning("role with empty message: " + role) yield (role + ":",) def copy(self): return Conversation( system=self.system, roles=self.roles, messages=[[x, y] for x, y in self.messages], offset=self.offset, sep_style=self.sep_style, sep=self.sep, sep2=self.sep2, ) def append_message(self, role, message): self.messages.append([role, message]) conv_vicuna_v1_1 = Conversation( system="A chat between a curious user and an artificial intelligence assistant. " "The assistant gives helpful, detailed, and polite answers to the user's questions.", roles=["USER", "ASSISTANT"], messages=[], offset=0, sep_style=SeparatorStyle.TWO, sep=" ", sep2=" ", ) class ShareGPTPrompter: def __init__(self, prompt_style=None): if prompt_style != PromptStyle.chat.value: raise Exception( f"unsupported prompt_style for ShareGPTPrompter({prompt_style})" ) # def match_prompt_style(self): # if self.prompt_style == PromptStyle.chat.value: # self.prompt_input = self.system_prompt + "USER: {instruction}\n{input}\nASSISTANT:" # self.prompt_no_input = self.system_no_input_prompt + "USER: {instruction}\nASSISTANT:" # self.response_split = "ASSISTANT:" def build_prompt(self, source, *args, **kwargs) -> Generator[str, None, None]: # ignore the system prompt if provided if source[0]["from"] == "system": source.pop(0) if len(source) < 2: # If there isn't a back and forth conversation, ignore it # also happens on the data splitting leaving empty conversations raise IndexError conv = conv_vicuna_v1_1.copy() roles = {"human": conv.roles[0], "gpt": conv.roles[1]} try: # Apply prompt templates if ( source[0]["from"] not in roles or roles[source[0]["from"]] != conv.roles[0] ): # Skip the first one if it is not from human source = source[1:] except IndexError as e: # sometimes there is a bing or system chat raise e conv.messages = [] for j, sentence in enumerate(source): role = roles[sentence["from"]] assert role == conv.roles[j % 2] conv.append_message(role, sentence["value"]) for part in conv.get_prompt(): yield part