import logging from hashlib import md5 from pathlib import Path from datasets import ( load_from_disk, load_dataset, IterableDataset, Dataset, concatenate_datasets, DatasetDict, ) from huggingface_hub import hf_hub_download from transformers import PreTrainedTokenizerBase from axolotl.datasets import TokenizedPromptDataset, ConstantLengthDataset from axolotl.prompt_strategies import load from axolotl.prompt_tokenizers import ( AlpacaPromptTokenizingStrategy, GPTeacherPromptTokenizingStrategy, OpenAssistantPromptTokenizingStrategy, AlpacaReflectionPTStrategy, ShareGPTPromptTokenizingStrategy, JeopardyPromptTokenizingStrategy, CompletionPromptTokenizingStrategy, AlpacaMultipleChoicePromptTokenizingStrategy, SummarizeTLDRPromptTokenizingStrategy, ) from axolotl.prompters import ( AlpacaPrompter, GPTeacherPrompter, ReflectAlpacaPrompter, ShareGPTPrompter, JeopardyPrompter, CompletionPrompter, MultipleChoiceExplainPrompter, SummarizeTLDRPrompter, MultipleChoiceConcisePrompter, ) def load_tokenized_prepared_datasets( tokenizer, cfg, default_dataset_prepared_path ) -> DatasetDict: tokenizer_name = tokenizer.__class__.__name__ ds_hash = str( md5( ( str(cfg.sequence_len) + "@" + "|".join(sorted([f"{d.path}:{d.type}" for d in cfg.datasets])) + "|" + tokenizer_name ).encode("utf-8") ).hexdigest() ) prepared_ds_path = ( Path(cfg.dataset_prepared_path) / ds_hash if cfg.dataset_prepared_path else Path(default_dataset_prepared_path) / ds_hash ) dataset = None try: if cfg.push_dataset_to_hub: dataset = load_dataset( f"{cfg.push_dataset_to_hub}/{ds_hash}", use_auth_token=True ) dataset = dataset["train"] except: pass if dataset: ... elif any(prepared_ds_path.glob("*")): logging.info(f"Loading prepared dataset from disk at {prepared_ds_path}...") dataset = load_from_disk(str(prepared_ds_path)) logging.info("Prepared dataset loaded from disk...") else: logging.info(f"Unable to find prepared dataset in {prepared_ds_path}") logging.info("Loading raw datasets...") datasets = [] for d in cfg.datasets: ds = None ds_from_hub = False try: load_dataset(d.path, streaming=True, use_auth_token=True) ds_from_hub = True except FileNotFoundError: pass # prefer local dataset, even if hub exists if Path(d.path).exists(): ds: IterableDataset = load_dataset( "json", data_files=d.path, streaming=False, split=None ) elif ds_from_hub: if d.data_files: ds = load_dataset( d.path, streaming=False, data_files=d.data_files, use_auth_token=True, ) else: ds = load_dataset(d.path, streaming=False, use_auth_token=True) else: fp = hf_hub_download( repo_id=d.path, repo_type="dataset", filename=d.data_files ) ds = load_dataset("json", data_files=fp, streaming=False, split=None) if not ds: raise Exception("unhandled dataset load") # support for using a subset of the data if d.shards: ds = ds.shuffle(seed=42)["train"].shard(num_shards=d.shards, index=0) d_type = d.type d_type_split = d_type.split(":") d_base_type = d_type_split[0] d_prompt_style = d_type_split[1] if len(d_type_split) > 1 else None if ds_strategy := load(d.type, tokenizer, cfg): ds_wrapper = TokenizedPromptDataset(ds_strategy, ds["train"]) datasets.append(ds_wrapper) elif d_base_type == "alpaca": ds_strategy = AlpacaPromptTokenizingStrategy( AlpacaPrompter(d_prompt_style), tokenizer, cfg.train_on_inputs, cfg.sequence_len, ) ds_wrapper = TokenizedPromptDataset(ds_strategy, ds["train"]) datasets.append(ds_wrapper) elif d_base_type == "explainchoice": ds_strategy = AlpacaMultipleChoicePromptTokenizingStrategy( MultipleChoiceExplainPrompter(d_prompt_style), tokenizer, cfg.train_on_inputs, cfg.sequence_len, ) ds_wrapper = TokenizedPromptDataset(ds_strategy, ds["train"]) datasets.append(ds_wrapper) elif d_base_type == "concisechoice": ds_strategy = AlpacaMultipleChoicePromptTokenizingStrategy( MultipleChoiceConcisePrompter(d_prompt_style), tokenizer, cfg.train_on_inputs, cfg.sequence_len, ) ds_wrapper = TokenizedPromptDataset(ds_strategy, ds["train"]) datasets.append(ds_wrapper) elif d_base_type == "summarizetldr": ds_strategy = SummarizeTLDRPromptTokenizingStrategy( SummarizeTLDRPrompter(d_prompt_style), tokenizer, cfg.train_on_inputs, cfg.sequence_len, ) ds_wrapper = TokenizedPromptDataset(ds_strategy, ds["train"]) datasets.append(ds_wrapper) elif d_base_type == "jeopardy": ds_strategy = JeopardyPromptTokenizingStrategy( JeopardyPrompter(d_prompt_style), tokenizer, cfg.train_on_inputs, cfg.sequence_len, ) ds_wrapper = TokenizedPromptDataset(ds_strategy, ds["train"]) datasets.append(ds_wrapper) elif d_base_type == "oasst": ds_strategy = OpenAssistantPromptTokenizingStrategy( AlpacaPrompter(d_prompt_style), tokenizer, cfg.train_on_inputs, cfg.sequence_len, ) ds_wrapper = TokenizedPromptDataset(ds_strategy, ds["train"]) datasets.append(ds_wrapper) elif d_base_type == "gpteacher": ds_strategy = GPTeacherPromptTokenizingStrategy( GPTeacherPrompter(d_prompt_style), tokenizer, cfg.train_on_inputs, cfg.sequence_len, ) ds_wrapper = TokenizedPromptDataset(ds_strategy, ds["train"]) datasets.append(ds_wrapper) elif d_base_type == "reflection": ds_strategy = AlpacaReflectionPTStrategy( ReflectAlpacaPrompter(d_prompt_style), tokenizer, cfg.train_on_inputs, cfg.sequence_len, ) ds_wrapper = TokenizedPromptDataset(ds_strategy, ds["train"]) datasets.append(ds_wrapper) elif d_base_type == "sharegpt": ds_strategy = ShareGPTPromptTokenizingStrategy( ShareGPTPrompter(d_prompt_style), tokenizer, cfg.train_on_inputs, cfg.sequence_len, ) ds_wrapper = TokenizedPromptDataset(ds_strategy, ds["train"]) datasets.append(ds_wrapper) elif d_base_type == "completion": ds_strategy = CompletionPromptTokenizingStrategy( CompletionPrompter(), tokenizer, cfg.train_on_inputs, cfg.sequence_len, ) ds_wrapper = TokenizedPromptDataset(ds_strategy, ds["train"]) datasets.append(ds_wrapper) else: logging.error(f"unhandled prompt tokenization strategy: {d.type}") logging.info("tokenizing, merging, and shuffling master dataset") samples = [] for d in datasets: samples = samples + [i for i in d] dataset = Dataset.from_list(samples).shuffle(seed=42) if cfg.local_rank == 0: logging.info( f"Saving merged prepared dataset to disk... {prepared_ds_path}" ) dataset.save_to_disk(prepared_ds_path) if cfg.push_dataset_to_hub: logging.info( f"Saving merged prepared dataset with push_to_hub... {cfg.push_dataset_to_hub}/{ds_hash}" ) dataset.push_to_hub( f"{cfg.push_dataset_to_hub}/{ds_hash}", private=True ) return dataset def load_prepare_datasets( tokenizer: PreTrainedTokenizerBase, cfg, default_dataset_prepared_path ) -> (Dataset, Dataset): max_packed_sequence_len = ( cfg.max_packed_sequence_len if cfg.max_packed_sequence_len else cfg.sequence_len ) max_packed_sequence_len = min( max_packed_sequence_len, cfg.sequence_len ) # make sure we don't accidentally set it larger than sequence_len tokenizer_name = tokenizer.__class__.__name__ if cfg.max_packed_sequence_len is not None: # see if we can go ahead and load the stacked dataset seed = f"@{str(cfg.seed)}" if cfg.seed else "" ds_hash = str( md5( ( str(cfg.sequence_len) + "@" + str(max_packed_sequence_len) + seed + "|".join(sorted([f"{d.path}:{d.type}" for d in cfg.datasets])) + "|" + tokenizer_name ).encode("utf-8") ).hexdigest() ) prepared_ds_path = ( Path(cfg.dataset_prepared_path) / ds_hash if cfg.dataset_prepared_path else Path(default_dataset_prepared_path) / ds_hash ) dataset = None try: if cfg.push_dataset_to_hub: logging.info( f"Checking for packed prepared dataset from hub... {cfg.push_dataset_to_hub}/{ds_hash}" ) dataset = load_dataset( f"{cfg.push_dataset_to_hub}/{ds_hash}", use_auth_token=True ) dataset = dataset["train"] except: pass if dataset: ... elif any(prepared_ds_path.glob("*")): logging.info( f"Loading prepared packed dataset from disk at {prepared_ds_path}..." ) dataset = load_from_disk(str(prepared_ds_path)) logging.info("Prepared packed dataset loaded from disk...") if cfg.push_dataset_to_hub: logging.info( f"Saving packed prepared dataset with push_to_hub... {cfg.push_dataset_to_hub}/{ds_hash}" ) dataset.push_to_hub( f"{cfg.push_dataset_to_hub}/{ds_hash}", private=True ) else: dataset = load_tokenized_prepared_datasets( tokenizer, cfg, default_dataset_prepared_path ) if cfg.seed: dataset = dataset.shuffle(seed=cfg.seed) constant_len_dataset = ConstantLengthDataset( tokenizer, [dataset], seq_length=max_packed_sequence_len, ) logging.info( f"packing master dataset to len: {cfg.max_packed_sequence_len}" ) dataset = Dataset.from_list([_ for _ in constant_len_dataset]) # filter out bad data dataset = Dataset.from_list( [ d for d in dataset if len(d["input_ids"]) < cfg.sequence_len and len(d["input_ids"]) > 0 and len(d["input_ids"]) == len(d["attention_mask"]) and len(d["input_ids"]) == len(d["labels"]) ] ) if cfg.local_rank == 0: logging.info( f"Saving packed prepared dataset to disk... {prepared_ds_path}" ) dataset.save_to_disk(prepared_ds_path) if cfg.push_dataset_to_hub: logging.info( f"Saving packed prepared dataset with push_to_hub... {cfg.push_dataset_to_hub}/{ds_hash}" ) dataset.push_to_hub( f"{cfg.push_dataset_to_hub}/{ds_hash}", private=True ) else: dataset = load_tokenized_prepared_datasets( tokenizer, cfg, default_dataset_prepared_path ) if cfg.dataset_shard_num and cfg.dataset_shard_idx is not None: logging.info( f"Using index #{cfg.dataset_shard_idx} of {cfg.dataset_shard_num} shards" ) dataset = dataset.shard( num_shards=cfg.dataset_shard_num, index=cfg.dataset_shard_idx ) dataset = dataset.train_test_split(test_size=cfg.val_set_size, shuffle=False) train_dataset = dataset["train"] eval_dataset = dataset["test"] return train_dataset, eval_dataset