import importlib import logging import os import random import signal import sys from pathlib import Path from typing import Optional, List, Dict, Any, Union import fire import torch import yaml # add src to the pythonpath so we don't need to pip install this from axolotl.utils.tokenization import check_dataset_labels from axolotl.utils.validation import validate_config from axolotl.utils.dict import DictDefault project_root = os.path.abspath(os.path.join(os.path.dirname(__file__), "..")) src_dir = os.path.join(project_root, "src") sys.path.insert(0, src_dir) from axolotl.utils.data import load_prepare_datasets from axolotl.utils.models import load_model, load_tokenizer from axolotl.utils.trainer import setup_trainer from axolotl.utils.wandb import setup_wandb_env_vars logging.basicConfig(level=os.getenv("LOG_LEVEL", "INFO")) DEFAULT_DATASET_PREPARED_PATH = "last_run_prepared" def choose_device(cfg): def get_device(): if torch.cuda.is_available(): return f"cuda:{cfg.local_rank}" else: try: if torch.backends.mps.is_available(): return "mps" except: return "cpu" cfg.device = get_device() if cfg.device == "cuda": cfg.device_map = {"": cfg.local_rank} else: cfg.device_map = {"": cfg.device} def get_multi_line_input() -> Optional[str]: print("Give me an instruction (Ctrl + D to finish): ") instruction = "" for line in sys.stdin: instruction += line # instruction = pathlib.Path("/proc/self/fd/0").read_text() return instruction def do_inference(cfg, model, tokenizer, prompter="AlpacaPrompter"): tokenizer.add_special_tokens({"unk_token": ""}) tokenizer.add_special_tokens({"bos_token": ""}) tokenizer.add_special_tokens({"eos_token": ""}) prompter_module = getattr(importlib.import_module("axolotl.prompters"), prompter) while True: # support for multiline inputs instruction = get_multi_line_input() if not instruction: return prompt: str = next(prompter_module().build_prompt(instruction=instruction)) batch = tokenizer(prompt, return_tensors="pt", add_special_tokens=True) model.eval() with torch.no_grad(): # gc = GenerationConfig() # TODO swap out and use this generated = model.generate( inputs=batch["input_ids"].to(cfg.device), do_sample=True, use_cache=True, repetition_penalty=1.1, max_new_tokens=100, temperature=0.9, top_p=0.95, top_k=40, return_DictDefault_in_generate=True, output_attentions=False, output_hidden_states=False, output_scores=False, ) print(tokenizer.decode(generated["sequences"].cpu().tolist()[0])) def choose_config(path: Path): yaml_files = [file for file in path.glob("*.yml")] if not yaml_files: raise ValueError( "No YAML config files found in the specified directory. Are you using a .yml extension?" ) print("Choose a YAML file:") for idx, file in enumerate(yaml_files): print(f"{idx + 1}. {file}") chosen_file = None while chosen_file is None: try: choice = int(input("Enter the number of your choice: ")) if 1 <= choice <= len(yaml_files): chosen_file = yaml_files[choice - 1] else: print("Invalid choice. Please choose a number from the list.") except ValueError: print("Invalid input. Please enter a number.") return chosen_file def check_not_in(list1: List[str], list2: Union[Dict[str, Any], List[str]]) -> bool: return not any(el in list2 for el in list1) def train( config: Path = Path("configs/"), prepare_ds_only: bool = False, **kwargs, ): if Path(config).is_dir(): config = choose_config(config) # load the config from the yaml file with open(config, "r") as f: cfg: DictDefault = DictDefault(yaml.load(f, Loader=yaml.Loader)) # if there are any options passed in the cli, if it is something that seems valid from the yaml, # then overwrite the value cfg_keys = cfg.keys() for k in kwargs: # if not strict, allow writing to cfg even if it's not in the yml already if k in cfg_keys or cfg.strict is False: # handle booleans if isinstance(cfg[k], bool): cfg[k] = bool(kwargs[k]) else: cfg[k] = kwargs[k] # setup some derived config / hyperparams cfg.gradient_accumulation_steps = cfg.batch_size // cfg.micro_batch_size cfg.world_size = int(os.environ.get("WORLD_SIZE", 1)) cfg.local_rank = int(os.environ.get("LOCAL_RANK", 0)) choose_device(cfg) cfg.ddp = cfg.ddp if cfg.ddp is not None else cfg.world_size != 1 if cfg.ddp: cfg.device_map = {"": int(os.environ.get("LOCAL_RANK", 0))} cfg.gradient_accumulation_steps = ( cfg.gradient_accumulation_steps // cfg.world_size ) setup_wandb_env_vars(cfg) if cfg.device == "mps": cfg.load_in_8bit = False cfg.tf32 = False if cfg.bf16: cfg.fp16 = True cfg.bf16 = False validate_config(cfg) # load the tokenizer first logging.info("loading tokenizer...") tokenizer = load_tokenizer( cfg.base_model_config, cfg.tokenizer_type, cfg ) if check_not_in(["inference", "shard", "merge_lora"], kwargs): # don't need to load dataset for these train_dataset, eval_dataset = load_prepare_datasets( tokenizer, cfg, DEFAULT_DATASET_PREPARED_PATH ) if prepare_ds_only: logging.info("Finished preparing dataset. Exiting...") return # Load the model and tokenizer logging.info("loading model and peft_config...") model, peft_config = load_model( cfg.base_model, cfg.base_model_config, cfg.model_type, tokenizer, cfg, adapter=cfg.adapter, inference=("inference" in kwargs), ) if "merge_lora" in kwargs and cfg.adapter is not None: logging.info("running merge of LoRA with base model") model = model.merge_and_unload() model.to(dtype=torch.float16) if cfg.local_rank == 0: logging.info("saving merged model") model.save_pretrained(str(Path(cfg.output_dir) / "merged")) return if "inference" in kwargs: logging.info("calling do_inference function") do_inference(cfg, model, tokenizer) return if "shard" in kwargs: model.save_pretrained(cfg.output_dir) return if cfg.debug: logging.info("check_dataset_labels...") check_dataset_labels( train_dataset.select( [random.randrange(0, len(train_dataset) - 1) for i in range(5)] ), tokenizer, ) trainer = setup_trainer(cfg, train_dataset, eval_dataset, model, tokenizer) model.config.use_cache = False if torch.__version__ >= "2" and sys.platform != "win32": logging.info("Compiling torch model") model = torch.compile(model) # go ahead and presave, so we have the adapter config available to inspect if peft_config: logging.info(f"Pre-saving adapter config to {cfg.output_dir}") peft_config.save_pretrained(cfg.output_dir) # In case we want to stop early with ctrl+c, this is a nice to have to save the pretrained model if cfg.local_rank == 0: signal.signal( signal.SIGINT, lambda signal, frame: (model.save_pretrained(cfg.output_dir), exit(0)), ) logging.info("Starting trainer...") if cfg.group_by_length: logging.info("hang tight... sorting dataset for group_by_length") resume_from_checkpoint = cfg.resume_from_checkpoint if cfg.resume_from_checkpoint is None and cfg.auto_resume_from_checkpoints: possible_checkpoints = [ str(cp) for cp in Path(cfg.output_dir).glob("checkpoint-*") ] if len(possible_checkpoints) > 0: sorted_paths = sorted( possible_checkpoints, key=lambda path: int(path.split("-")[-1]) ) resume_from_checkpoint = sorted_paths[-1] logging.info( f"Using Auto-resume functionality to start with checkpoint at {resume_from_checkpoint}" ) trainer.train(resume_from_checkpoint=resume_from_checkpoint) logging.info(f"Training Completed!!! Saving pre-trained model to {cfg.output_dir}") # TODO do we need this fix? https://huggingface.co/docs/accelerate/usage_guides/fsdp#saving-and-loading # only save on rank 0, otherwise it corrupts output on multi-GPU when multiple processes attempt to write the same file if cfg.local_rank == 0: model.save_pretrained(cfg.output_dir) # trainer.save_model(cfg.output_dir) # TODO this may be needed for deepspeed to work? need to review another time if __name__ == "__main__": fire.Fire(train)