""" E2E smoke tests to check that the monkeypatches are in place for certain configurations """ import unittest from axolotl.common.cli import TrainerCliArgs from axolotl.utils.config import normalize_config from axolotl.utils.dict import DictDefault from axolotl.utils.models import load_model, load_tokenizer from ..utils import with_temp_dir class TestModelPatches(unittest.TestCase): """ TestCases for the multipack monkey patches """ @with_temp_dir def test_mixtral_multipack(self, temp_dir): cfg = DictDefault( { "base_model": "hf-internal-testing/Mixtral-tiny", "tokenizer_config": "LoneStriker/Mixtral-8x7B-v0.1-HF", "flash_attention": True, "sample_packing": True, "sequence_len": 2048, "val_set_size": 0.1, "special_tokens": {}, "datasets": [ { "path": "mhenrichsen/alpaca_2k_test", "type": "alpaca", }, ], "num_epochs": 2, "micro_batch_size": 2, "gradient_accumulation_steps": 1, "output_dir": temp_dir, "learning_rate": 0.00001, "optimizer": "adamw_bnb_8bit", "lr_scheduler": "cosine", "max_steps": 20, "save_steps": 10, "eval_steps": 10, } ) normalize_config(cfg) cli_args = TrainerCliArgs() tokenizer = load_tokenizer(cfg) model, _ = load_model(cfg, tokenizer, inference=cli_args.inference) assert ( "MixtralFlashAttention2" in model.model.layers[0].self_attn.__class__.__name__ ) @with_temp_dir def test_mistral_multipack(self, temp_dir): cfg = DictDefault( { "base_model": "openaccess-ai-collective/tiny-mistral", "flash_attention": True, "sample_packing": True, "sequence_len": 2048, "val_set_size": 0.1, "special_tokens": {}, "datasets": [ { "path": "mhenrichsen/alpaca_2k_test", "type": "alpaca", }, ], "num_epochs": 2, "micro_batch_size": 2, "gradient_accumulation_steps": 1, "output_dir": temp_dir, "learning_rate": 0.00001, "optimizer": "adamw_bnb_8bit", "lr_scheduler": "cosine", "max_steps": 20, "save_steps": 10, "eval_steps": 10, } ) normalize_config(cfg) cli_args = TrainerCliArgs() tokenizer = load_tokenizer(cfg) model, _ = load_model(cfg, tokenizer, inference=cli_args.inference) assert ( "axolotl.monkeypatch.mistral_attn_hijack_flash" in model.model.layers[0].self_attn.forward.__module__ )