"""Module for validating config files""" import logging import torch def validate_config(cfg): if cfg.gradient_accumulation_steps and cfg.batch_size: raise ValueError( "please set only one of gradient_accumulation_steps or batch_size" ) if cfg.batch_size: logging.warning( "%s\n%s", "batch_size is not recommended. Please use gradient_accumulation_steps instead.", "To calculate the equivalent gradient_accumulation_steps, divide batch_size / micro_batch_size / number of gpus.", ) if cfg.load_4bit: raise ValueError( "cfg.load_4bit parameter has been deprecated and replaced by cfg.gptq" ) if cfg.adapter == "qlora": if cfg.merge_lora: # can't merge qlora if loaded in 8bit or 4bit if cfg.load_in_8bit: raise ValueError("Can't merge qlora if loaded in 8bit") if cfg.gptq: raise ValueError("Can't merge qlora if gptq") if cfg.load_in_4bit: raise ValueError("Can't merge qlora if loaded in 4bit") else: if cfg.load_in_8bit: raise ValueError("Can't load qlora in 8bit") if cfg.gptq: raise ValueError("Can't load qlora if gptq") if not cfg.load_in_4bit: raise ValueError("Require cfg.load_in_4bit to be True for qlora") if not cfg.load_in_8bit and cfg.adapter == "lora": logging.warning("We recommend setting `load_in_8bit: true` for LORA finetuning") if cfg.trust_remote_code: logging.warning( "`trust_remote_code` is set to true. Please make sure that you reviewed the remote code/model." ) if cfg.push_dataset_to_hub and cfg.hf_use_auth_token is not True: raise ValueError( "Require cfg.hf_use_auth_token to be True for push_dataset_to_hub" ) if (cfg.base_model and "falcon" in cfg.base_model.lower()) and cfg.fsdp: raise ValueError("FSDP is not supported for falcon models") if ( cfg.base_model and "mpt" in cfg.base_model.lower() ) and cfg.gradient_checkpointing: raise ValueError("gradient_checkpointing is not supported for MPT models") if cfg.flash_optimum is True: if cfg.adapter: logging.warning( "BetterTransformers probably doesn't work with PEFT adapters" ) if cfg.fp16 or cfg.bf16: raise ValueError("AMP is not supported with BetterTransformer") if cfg.float16 is not True and cfg.bloat16 is not True: logging.warning( "You should probably set bfloat16 or float16 to true to " "load the model in float16 for BetterTransformers" ) if int(torch.__version__.split(".")[0]) < 2: logging.warning("torch>=2.0.0 required") raise ValueError( f"flash_optimum for BetterTransformers may not be used with {torch.__version__}" ) if cfg.pretraining_dataset and cfg.group_by_length: logging.warning( "You probably want to disable group_by_length as it will force a streamed dataset to download completely." ) if any([cfg.adam_beta1, cfg.adam_beta2, cfg.adam_epsilon]) and ( not cfg.optimizer or "adamw" not in cfg.optimizer ): logging.warning("adamw hyperparameters found, but no adamw optimizer set") if cfg.push_to_hub_model_id: raise ValueError( "push_to_hub_model_id is deprecated. Please use hub_model_id instead." ) # TODO # MPT 7b # https://github.com/facebookresearch/bitsandbytes/issues/25 # no 8bit adaAmw w bf16 # GPT-NeoX # evals broken when extending context len # File "/root/miniconda3/envs/py3.9/lib/python3.9/site-packages/transformers/models/gpt_neox/modeling_gpt_neox.py", line 162, in forward attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask) # File "/root/miniconda3/envs/py3.9/lib/python3.9/site-packages/optimum/bettertransformer/models/attention.py", line 74, in gpt2_wrapped_scaled_dot_product # attention_mask = causal_mask + attention_mask # RuntimeError: The size of tensor a (2048) must match the size of tensor b (8132) at non-singleton dimension 3