""" Test module for sharegpt integration w chatml """ import pytest from datasets import Dataset from tokenizers import AddedToken from transformers import AutoTokenizer from axolotl.datasets import TokenizedPromptDataset from axolotl.prompt_strategies.sharegpt import ( GlaiveShareGPTPromptTokenizingStrategy, SimpleShareGPTPromptTokenizingStrategy, register_chatml_template, register_llama3_template, ) from axolotl.prompters import ShareGPTPrompterV2 register_chatml_template() register_llama3_template() @pytest.fixture(name="sharegpt_dataset") def fixture_sharegpt_dataset(): return Dataset.from_list( [ { "conversations": [ { "from": "system", "value": "repeat", }, { "from": "human", "value": "hello", }, { "from": "gpt", "value": "hello", }, { "from": "human", "value": "goodbye", }, { "from": "gpt", "value": "goodbye", }, ] } ] ) @pytest.fixture(name="glaive_dataset") def fixture_sharegpt_glaive_dataset(): return Dataset.from_list( [ { "system": "SYSTEM: This is a system prompt", "chat": "USER: Can you book a flight for me from New York to London? ASSISTANT: I'm sorry, but I don't have the capability to book flights. <|endoftext|>", } ] ) @pytest.fixture(name="multi_role_dataset") def fixture_multi_role_dataset(): return Dataset.from_list( [ { "conversations": [ { "from": "system", "value": "use get_weather(city) to get the weather for a city", }, { "from": "human", "value": "hello, what's the weather in New York?", }, { "from": "gpt", "value": "let me get that for you", }, { "from": "tool", "value": "get_weather(New York)", }, { "from": "gpt", "value": "the weather in New York is 70 degrees and sunny", }, ] } ] ) @pytest.fixture(name="tokenizer") def fixture_tokenizer(): tokenizer = AutoTokenizer.from_pretrained( "casperhansen/mistral-7b-instruct-v0.1-awq" ) tokenizer.add_special_tokens( { "eos_token": AddedToken( "<|im_end|>", rstrip=False, lstrip=False, normalized=False ) } ) tokenizer.add_tokens( [ AddedToken("<|im_start|>", rstrip=False, lstrip=False, normalized=False), ] ) return tokenizer @pytest.fixture(name="llama3_tokenizer") def fixture_llama3_tokenizer(): tokenizer = AutoTokenizer.from_pretrained("NousResearch/Meta-Llama-3-8B") tokenizer.eos_token = "<|eot_id|>" return tokenizer class TestSharegptLlama3: """Test class for ShareGPT style datasets with llama-3 prompts""" def test_tokenization(self, sharegpt_dataset, llama3_tokenizer): strategy = SimpleShareGPTPromptTokenizingStrategy( ShareGPTPrompterV2( conversation="llama3", role_key_model=None, role_key_human=None, ), llama3_tokenizer, False, # train_on_inputs 2048, # sequence_len ) dataset_wrapper = TokenizedPromptDataset( strategy, sharegpt_dataset, process_count=1 ) input_ids = dataset_wrapper[0]["input_ids"] # fmt: off assert input_ids == [ 128000, # bos 128006, 9125, 128007, # system header 271, 31724, 128009, # sys prompt, eot 128006, 882, 128007, # user header 271, 15339, 128009, # user prompt eot 128006, 78191, 128007, # assistant header 271, 15339, 128009, # assistant response eot 128006, 882, 128007, 271, 19045, 29474, 128009, 128006, 78191, 128007, 271, 19045, 29474, 128009, ] # fmt: on class TestSharegptChatML: """ Test class for sharegpt prompter """ def test_no_double_im_end(self, sharegpt_dataset, tokenizer): strategy = SimpleShareGPTPromptTokenizingStrategy( ShareGPTPrompterV2( conversation="chatml", role_key_model=None, role_key_human=None, ), tokenizer, False, # train_on_inputs 2048, # sequence_len ) dataset_wrapper = TokenizedPromptDataset( strategy, sharegpt_dataset, process_count=1 ) input_ids = dataset_wrapper[0]["input_ids"] # fmt: off assert input_ids == [ # 28705, 13, is " \n" 1, # bos 32001, 1587, 13, 25997, 32000, 28705, 13, # system 32001, 2188, 13, 21558, 32000, 28705, 13, # human 32001, 13892, 13, 21558, 32000, 28705, 13, # gpt 32001, 2188, 13, 12684, 17664, 32000, 28705, 13, # human 32001, 13892, 13, 12684, 17664, 32000, 28705, 13, # gpt ] # fmt: on def test_w_train_on_input(self, sharegpt_dataset, tokenizer): strategy = SimpleShareGPTPromptTokenizingStrategy( ShareGPTPrompterV2( conversation="chatml", role_key_model=None, role_key_human=None, ), tokenizer, False, # train_on_inputs 2048, # sequence_len ) dataset_wrapper = TokenizedPromptDataset( strategy, sharegpt_dataset, process_count=1 ) labels = dataset_wrapper[0]["labels"] # fmt: off assert labels == [ -100, # bos -100, -100, -100, -100, -100, -100, -100, # system -100, -100, -100, -100, -100, -100, -100, # human -100, -100, 13, 21558, 32000, 28705, 13, # gpt -100, -100, -100, -100, -100, -100, -100, -100, # human -100, -100, 13, 12684, 17664, 32000, 28705, 13, # gpt ] # fmt: on def test_no_train_on_input(self, sharegpt_dataset, tokenizer): strategy = SimpleShareGPTPromptTokenizingStrategy( ShareGPTPrompterV2( conversation="chatml", role_key_model=None, role_key_human=None, ), tokenizer, True, # train_on_inputs 2048, # sequence_len ) dataset_wrapper = TokenizedPromptDataset( strategy, sharegpt_dataset, process_count=1 ) labels = dataset_wrapper[0]["labels"] # fmt: off assert labels == [ 1, # bos 32001, 1587, 13, 25997, 32000, 28705, 13, # system 32001, 2188, 13, 21558, 32000, 28705, 13, # human 32001, 13892, 13, 21558, 32000, 28705, 13, # gpt 32001, 2188, 13, 12684, 17664, 32000, 28705, 13, # human 32001, 13892, 13, 12684, 17664, 32000, 28705, 13, # gpt ] # fmt: on def test_chatml_glaive(self, glaive_dataset, tokenizer): strategy = GlaiveShareGPTPromptTokenizingStrategy( ShareGPTPrompterV2( conversation="chatml", role_key_model=None, role_key_human=None, ), tokenizer, True, # train_on_inputs 2048, # sequence_len ) dataset_wrapper = TokenizedPromptDataset( strategy, glaive_dataset, process_count=1 ) labels = dataset_wrapper[0]["labels"] # fmt: off assert labels == [ 1, # bos 32001, 1587, 13, 3260, 349, 264, 1587, 11510, 32000, 28705, 13, # system 32001, 2188, 13, 6325, 368, 1820, 264, 9314, 354, 528, 477, 1450, 2726, 298, 4222, 28804, 32000, 28705, 13, # human 32001, 13892, 13, 28737, 28742, 28719, 7371, 28725, 562, 315, 949, 28742, 28707, 506, 272, 21368, 298, 1820, 22447, 28723, 28705, 523, 28766, 416, 1009, 772, 28766, 28767, 32000, 28705, 13 # gpt ] # fmt: on def test_multi_role_dataset(self, multi_role_dataset, tokenizer): strategy = SimpleShareGPTPromptTokenizingStrategy( ShareGPTPrompterV2(conversation="chatml", roles={"input": ["tool"]}), tokenizer, False, # train_on_inputs 2048, # sequence_len ) dataset_wrapper = TokenizedPromptDataset( strategy, multi_role_dataset, process_count=1 ) input_ids = dataset_wrapper[0]["input_ids"] # fmt: off assert input_ids == [ 1, # bos 32001, 1587, 13, 1730, 625, 28730, 769, 1223, 28732, 18373, 28731, 298, 625, 272, 8086, 354, 264, 2990, 32000, 28705, 13, # system 32001, 2188, 13, 21558, 28725, 767, 28742, 28713, 272, 8086, 297, 1450, 2726, 28804, 32000, 28705, 13, # human 32001, 13892, 13, 895, 528, 625, 369, 354, 368, 32000, 28705, 13, # gpt 32001, 3921, 13, 527, 28730, 769, 1223, 28732, 2972, 2726, 28731, 32000, 28705, 13, # tool 32001, 13892, 13, 1237, 8086, 297, 1450, 2726, 349, 28705, 28787, 28734, 11182, 304, 4376, 1780, 32000, 28705, 13 # gpt ] # fmt: on labels = dataset_wrapper[0]["labels"] # fmt: off assert labels == [ -100, # bos -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, # system -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, # human -100, -100, 13, 895, 528, 625, 369, 354, 368, 32000, 28705, 13, # gpt -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, # tool -100, -100, 13, 1237, 8086, 297, 1450, 2726, 349, 28705, 28787, 28734, 11182, 304, 4376, 1780, 32000, 28705, 13 # gpt ] # fmt: on