""" unit tests for axolotl.core.trainer_builder """ import pytest from axolotl.core.trainer_builder import HFDPOTrainerBuilder from axolotl.utils.config import normalize_config from axolotl.utils.dict import DictDefault from axolotl.utils.models import load_model, load_tokenizer @pytest.fixture(name="cfg") def fixture_cfg(): cfg = DictDefault( { "base_model": "TinyLlama/TinyLlama-1.1B-Chat-v0.6", "model_type": "AutoModelForCausalLM", "tokenizer_type": "LlamaTokenizer", "micro_batch_size": 1, "gradient_accumulation_steps": 1, "learning_rate": 0.00005, "save_steps": 100, "output_dir": "./model-out", "warmup_steps": 10, "gradient_checkpointing": False, "optimizer": "adamw_torch", "sequence_len": 2048, "rl": True, "adam_beta1": 0.998, "adam_beta2": 0.9, "adam_epsilon": 0.00001, "dataloader_num_workers": 1, "dataloader_pin_memory": True, "model_config_type": "llama", } ) normalize_config(cfg) return cfg @pytest.fixture(name="tokenizer") def fixture_tokenizer(cfg): return load_tokenizer(cfg) @pytest.fixture(name="model") def fixture_model(cfg, tokenizer): return load_model(cfg, tokenizer) class TestHFDPOTrainerBuilder: """ TestCase class for DPO trainer builder """ def test_build_training_arguments(self, cfg, model, tokenizer): builder = HFDPOTrainerBuilder(cfg, model, tokenizer) training_arguments = builder.build_training_arguments(100) assert training_arguments.adam_beta1 == 0.998 assert training_arguments.adam_beta2 == 0.9 assert training_arguments.adam_epsilon == 0.00001 assert training_arguments.dataloader_num_workers == 1 assert training_arguments.dataloader_pin_memory is True