""" E2E tests for lora llama """ import logging import os import unittest from pathlib import Path import pytest from transformers.utils import is_auto_gptq_available, is_torch_bf16_gpu_available from axolotl.cli import load_datasets from axolotl.common.cli import TrainerCliArgs from axolotl.train import train from axolotl.utils.config import normalize_config from axolotl.utils.dict import DictDefault from ..utils import with_temp_dir LOG = logging.getLogger("axolotl.tests.e2e") os.environ["WANDB_DISABLED"] = "true" class TestLoraLlama(unittest.TestCase): """ Test case for Llama models using LoRA w multipack """ @with_temp_dir def test_lora_packing(self, temp_dir): # pylint: disable=duplicate-code cfg = DictDefault( { "base_model": "JackFram/llama-68m", "tokenizer_type": "LlamaTokenizer", "sequence_len": 1024, "sample_packing": True, "flash_attention": True, "load_in_8bit": True, "adapter": "lora", "lora_r": 32, "lora_alpha": 64, "lora_dropout": 0.05, "lora_target_linear": True, "val_set_size": 0.2, "special_tokens": { "unk_token": "", "bos_token": "", "eos_token": "", }, "datasets": [ { "path": "mhenrichsen/alpaca_2k_test", "type": "alpaca", }, ], "num_epochs": 2, "micro_batch_size": 8, "gradient_accumulation_steps": 1, "output_dir": temp_dir, "learning_rate": 0.00001, "optimizer": "adamw_torch", "lr_scheduler": "cosine", } ) if is_torch_bf16_gpu_available(): cfg.bf16 = True else: cfg.fp16 = True normalize_config(cfg) cli_args = TrainerCliArgs() dataset_meta = load_datasets(cfg=cfg, cli_args=cli_args) train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta) assert (Path(temp_dir) / "adapter_model.bin").exists() @pytest.mark.skipif(not is_auto_gptq_available(), reason="auto-gptq not available") @with_temp_dir def test_lora_gptq_packed(self, temp_dir): # pylint: disable=duplicate-code cfg = DictDefault( { "base_model": "TheBlokeAI/jackfram_llama-68m-GPTQ", "model_type": "AutoModelForCausalLM", "tokenizer_type": "LlamaTokenizer", "sequence_len": 1024, "sample_packing": True, "flash_attention": True, "load_in_8bit": True, "adapter": "lora", "gptq": True, "gptq_disable_exllama": True, "lora_r": 32, "lora_alpha": 64, "lora_dropout": 0.05, "lora_target_linear": True, "val_set_size": 0.1, "special_tokens": { "unk_token": "", "bos_token": "", "eos_token": "", }, "datasets": [ { "path": "mhenrichsen/alpaca_2k_test", "type": "alpaca", }, ], "num_epochs": 2, "save_steps": 0.5, "micro_batch_size": 8, "gradient_accumulation_steps": 1, "output_dir": temp_dir, "learning_rate": 0.00001, "optimizer": "adamw_torch", "lr_scheduler": "cosine", } ) normalize_config(cfg) cli_args = TrainerCliArgs() dataset_meta = load_datasets(cfg=cfg, cli_args=cli_args) train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta) assert (Path(temp_dir) / "adapter_model.bin").exists()