""" Directly copied the code from https://raw.githubusercontent.com/oobabooga/text-generation-webui/main/modules/llama_attn_hijack.py and made some adjustments """ import logging import math from typing import Optional, Tuple import torch import torch.nn.functional as F import transformers.models.llama.modeling_llama from torch import nn try: import xformers.ops except ImportError: logging.error("xformers not found! Please install it before trying to use it.") def hijack_llama_attention(): transformers.models.llama.modeling_llama.LlamaAttention.forward = xformers_forward def hijack_llama_sdp_attention(): transformers.models.llama.modeling_llama.LlamaAttention.forward = ( sdp_attention_forward ) def xformers_forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: bool = False, use_cache: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: # pylint: disable=duplicate-code bsz, q_len, _ = hidden_states.size() if not hasattr(self, "pretraining_tp"): self.pretraining_tp = 1 if self.pretraining_tp > 1: key_value_slicing = ( self.num_key_value_heads * self.head_dim ) // self.pretraining_tp query_slices = self.q_proj.weight.split( (self.num_heads * self.head_dim) // self.pretraining_tp, dim=0 ) key_slices = self.k_proj.weight.split(key_value_slicing, dim=0) value_slices = self.v_proj.weight.split(key_value_slicing, dim=0) query_states = [ F.linear(hidden_states, query_slices[i]) for i in range(self.pretraining_tp) ] query_states = torch.cat(query_states, dim=-1) key_states = [ F.linear(hidden_states, key_slices[i]) for i in range(self.pretraining_tp) ] key_states = torch.cat(key_states, dim=-1) value_states = [ F.linear(hidden_states, value_slices[i]) for i in range(self.pretraining_tp) ] value_states = torch.cat(value_states, dim=-1) else: query_states = self.q_proj(hidden_states) key_states = self.k_proj(hidden_states) value_states = self.v_proj(hidden_states) query_states = query_states.view( bsz, q_len, self.num_heads, self.head_dim ).transpose(1, 2) key_states = key_states.view( bsz, q_len, self.num_key_value_heads, self.head_dim ).transpose(1, 2) value_states = value_states.view( bsz, q_len, self.num_key_value_heads, self.head_dim ).transpose(1, 2) kv_seq_len = key_states.shape[-2] if past_key_value is not None: kv_seq_len += past_key_value[0].shape[-2] cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) ( query_states, key_states, ) = transformers.models.llama.modeling_llama.apply_rotary_pos_emb( query_states, key_states, cos, sin, position_ids ) # [bsz, nh, t, hd] if past_key_value is not None: # reuse k, v, self_attention key_states = torch.cat([past_key_value[0], key_states], dim=2) value_states = torch.cat([past_key_value[1], value_states], dim=2) past_key_value = (key_states, value_states) if use_cache else None # repeat k/v heads if n_kv_heads < n_heads key_states = transformers.models.llama.modeling_llama.repeat_kv( key_states, self.num_key_value_groups ) value_states = transformers.models.llama.modeling_llama.repeat_kv( value_states, self.num_key_value_groups ) # We only apply xformers optimizations if we don't need to output the whole attention matrix if not output_attentions: query_states = query_states.transpose(1, 2) key_states = key_states.transpose(1, 2) value_states = value_states.transpose(1, 2) # This is a nasty hack. We know attention_mask in transformers is either LowerTriangular or all Zeros. # We therefore check if one element in the upper triangular portion is zero. If it is, then the mask is all zeros. if attention_mask is None or attention_mask[0, 0, 0, 1] == 0: # input and output should be of form (bsz, q_len, num_heads, head_dim) attn_output = xformers.ops.memory_efficient_attention( query_states, key_states, value_states, attn_bias=None ) else: # input and output should be of form (bsz, q_len, num_heads, head_dim) attn_output = xformers.ops.memory_efficient_attention( query_states, key_states, value_states, # attn_bias=attention_mask, attn_bias=xformers.ops.LowerTriangularMask(), ) attn_weights = None else: attn_weights = torch.matmul( query_states, key_states.transpose(2, 3) ) / math.sqrt(self.head_dim) if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len): raise ValueError( f"Attention weights should be of size {(bsz * self.num_heads, q_len, kv_seq_len)}, but is" f" {attn_weights.size()}" ) if attention_mask is not None: if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): raise ValueError( f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" ) attn_weights = attn_weights + attention_mask attn_weights = torch.max( attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min) ) # upcast attention to fp32 attn_weights = nn.functional.softmax( attn_weights, dim=-1, dtype=torch.float32 ).to(query_states.dtype) attn_output = torch.matmul(attn_weights, value_states) if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.transpose(1, 2).contiguous() # end x-formers vs. not x-formers if-else block attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) if self.pretraining_tp > 1: attn_output = attn_output.split(self.hidden_size // self.pretraining_tp, dim=2) o_proj_slices = self.o_proj.weight.split( self.hidden_size // self.pretraining_tp, dim=1 ) attn_output = sum( F.linear(attn_output[i], o_proj_slices[i]) for i in range(self.pretraining_tp) ) else: attn_output = self.o_proj(attn_output) return attn_output, attn_weights, past_key_value def sdp_attention_forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: bool = False, use_cache: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: # pylint: disable=duplicate-code bsz, q_len, _ = hidden_states.size() query_states = ( self.q_proj(hidden_states) .view(bsz, q_len, self.num_heads, self.head_dim) .transpose(1, 2) ) key_states = ( self.k_proj(hidden_states) .view(bsz, q_len, self.num_heads, self.head_dim) .transpose(1, 2) ) value_states = ( self.v_proj(hidden_states) .view(bsz, q_len, self.num_heads, self.head_dim) .transpose(1, 2) ) kv_seq_len = key_states.shape[-2] if past_key_value is not None: kv_seq_len += past_key_value[0].shape[-2] cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) ( query_states, key_states, ) = transformers.models.llama.modeling_llama.apply_rotary_pos_emb( query_states, key_states, cos, sin, position_ids ) # [bsz, nh, t, hd] if past_key_value is not None: # reuse k, v, self_attention key_states = torch.cat([past_key_value[0], key_states], dim=2) value_states = torch.cat([past_key_value[1], value_states], dim=2) past_key_value = (key_states, value_states) if use_cache else None # We only apply sdp attention if we don't need to output the whole attention matrix if not output_attentions: with torch.backends.cuda.sdp_kernel(): attn_output = torch.nn.functional.scaled_dot_product_attention( query_states, key_states, value_states, attn_mask=attention_mask, is_causal=False, ) attn_weights = None else: attn_weights = torch.matmul( query_states, key_states.transpose(2, 3) ) / math.sqrt(self.head_dim) if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len): raise ValueError( f"Attention weights should be of size {(bsz * self.num_heads, q_len, kv_seq_len)}, but is" f" {attn_weights.size()}" ) if attention_mask is not None: if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): raise ValueError( f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" ) attn_weights = attn_weights + attention_mask attn_weights = torch.max( attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min) ) # upcast attention to fp32 attn_weights = nn.functional.softmax( attn_weights, dim=-1, dtype=torch.float32 ).to(query_states.dtype) attn_output = torch.matmul(attn_weights, value_states) if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.transpose(1, 2) attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) attn_output = self.o_proj(attn_output) return attn_output, attn_weights, past_key_value