import abc import copy import functools import logging from transformers import PreTrainedTokenizer from axolotl.prompters import IGNORE_TOKEN_ID IGNORE_INDEX = -100 LLAMA_DEFAULT_PAD_TOKEN = "[PAD]" LLAMA_DEFAULT_EOS_TOKEN = "" LLAMA_DEFAULT_BOS_TOKEN = "" LLAMA_DEFAULT_UNK_TOKEN = "" class InvalidDataException(Exception): pass class PromptTokenizingStrategy(abc.ABC): def __init__( self, prompter, tokenizer, train_on_inputs: bool = False, sequence_len: int = 2048, ): self.prompter = prompter self.tokenizer: PreTrainedTokenizer = tokenizer self.train_on_inputs = train_on_inputs self.sequence_len = sequence_len @abc.abstractmethod def tokenize_prompt(self, prompt): pass @functools.cache def _get_user_token(self): id_or_ids = self.tokenizer.convert_tokens_to_ids("<|USER|>") if isinstance(id_or_ids, (int,)): return id_or_ids return False @functools.cache def _get_assistant_token(self): id_or_ids = self.tokenizer.convert_tokens_to_ids("<|ASSISTANT|>") if isinstance(id_or_ids, (int,)): return id_or_ids return False class InstructionPromptTokenizingStrategy(PromptTokenizingStrategy): def parse_instruction_fields(self, prompt) -> (str, str, str): raise NotImplementedError def tokenize_prompt(self, prompt): instruction, input, response = self.parse_instruction_fields(prompt) full_prompt = self._build_full_prompt(instruction, input, response) tokenized_full_prompt = self._tokenize(full_prompt) if not self.train_on_inputs: user_prompt = next(iter(self.prompter.build_prompt( instruction, input, ))) tokenized_user_prompt = self._tokenize(user_prompt, add_eos_token=False) user_prompt_len = len(tokenized_user_prompt["input_ids"]) # TODO this could be sped up using numpy array slicing tokenized_full_prompt["labels"] = [ -100 ] * user_prompt_len + tokenized_full_prompt["labels"][user_prompt_len:] return tokenized_full_prompt def _build_full_prompt(self, instruction, input, response): return next(iter(self.prompter.build_prompt( instruction, input, response, ))) def _tokenize(self, prompt, add_eos_token=True, strip_bos_token=False): result = self.tokenizer( prompt, truncation=True, max_length=self.sequence_len, padding=False, return_tensors=None, ) if ( result["input_ids"][-1] != self.tokenizer.eos_token_id and len(result["input_ids"]) < self.sequence_len and add_eos_token ): result["input_ids"].append(self.tokenizer.eos_token_id) result["attention_mask"].append(1) if ( result["input_ids"][0] == self.tokenizer.bos_token_id and strip_bos_token ): result["input_ids"] = result["input_ids"][1:] result["attention_mask"] = result["attention_mask"][1:] result["labels"] = result["input_ids"].copy() return result class AlpacaPromptTokenizingStrategy(InstructionPromptTokenizingStrategy): def parse_instruction_fields(self, prompt) -> (str, str, str): return ( prompt["instruction"], prompt["input"] if "input" in prompt else "", prompt["output"], ) class AlpacaMultipleChoicePromptTokenizingStrategy(InstructionPromptTokenizingStrategy): def parse_instruction_fields(self, prompt) -> (str, str, str): return ( prompt["question"], "\n".join(f'- "{choice}"' for choice in prompt["choices"]), prompt["solution"] if "solution" in prompt else prompt["explanation"], ) class JeopardyPromptTokenizingStrategy(InstructionPromptTokenizingStrategy): def parse_instruction_fields(self, prompt) -> (str, str, str): return ( prompt["question"], prompt["category"], "what is " + prompt["answer"], ) class OpenAssistantPromptTokenizingStrategy(InstructionPromptTokenizingStrategy): def parse_instruction_fields(self, prompt) -> (str, str, str): return ( prompt["INSTRUCTION"], "", prompt["RESPONSE"], ) class SummarizeTLDRPromptTokenizingStrategy(InstructionPromptTokenizingStrategy): def parse_instruction_fields(self, prompt) -> (str, str, str): return ( prompt["article"], "", prompt["summary"], ) class GPTeacherPromptTokenizingStrategy(InstructionPromptTokenizingStrategy): def parse_instruction_fields(self, prompt) -> (str, str, str): return ( prompt["instruction"], prompt["input"] if "input" in prompt else "", prompt["response"], ) class NomicGPT4AllPromptTokenizingStrategy(InstructionPromptTokenizingStrategy): def parse_instruction_fields(self, prompt) -> (str, str, str): return ( prompt["prompt"], "", prompt["response"], ) class CompletionPromptTokenizingStrategy(InstructionPromptTokenizingStrategy): def parse_instruction_fields(self, prompt) -> str: return prompt["text"] def tokenize_prompt(self, prompt): instruction = self.parse_instruction_fields(prompt) full_prompt = self._build_full_prompt(instruction, None, None) tokenized_full_prompt = self._tokenize(full_prompt) return tokenized_full_prompt def _build_full_prompt(self, instruction, input, response): return next(iter(self.prompter.build_prompt(instruction))) class ReflectionPromptTokenizingStrategy(PromptTokenizingStrategy): def parse_instruction_fields(self, prompt) -> (str, str, str, str, str): raise NotImplementedError def tokenize_prompt(self, prompt): ( instruction, input, output, reflection, corrected, ) = self.parse_instruction_fields(prompt) full_prompt = self._build_full_prompt( instruction, input, output, reflection, corrected ) tokenized_full_prompt = self._tokenize(full_prompt) if not self.train_on_inputs: user_prompt = next(iter(self.prompter.build_prompt( instruction, input, ))) tokenized_user_prompt = self._tokenize(user_prompt, add_eos_token=False) user_prompt_len = len(tokenized_user_prompt["input_ids"]) # TODO this could be sped up using numpy array slicing tokenized_full_prompt["labels"] = [ -100 ] * user_prompt_len + tokenized_full_prompt["labels"][user_prompt_len:] return tokenized_full_prompt def _build_full_prompt(self, instruction, input, output, reflection, corrected): return next(iter(self.prompter.build_prompt( instruction, input, output, reflection, corrected, ))) def _tokenize(self, prompt, add_eos_token=True): result = self.tokenizer( prompt, truncation=True, max_length=self.sequence_len, padding=False, return_tensors=None, ) if ( result["input_ids"][-1] != self.tokenizer.eos_token_id and len(result["input_ids"]) < self.sequence_len and add_eos_token ): result["input_ids"].append(self.tokenizer.eos_token_id) result["attention_mask"].append(1) result["labels"] = result["input_ids"].copy() return result class AlpacaReflectionPTStrategy(ReflectionPromptTokenizingStrategy): def parse_instruction_fields(self, prompt) -> (str, str, str, str, str): return ( prompt["instruction"], prompt["input"] if "input" in prompt else "", prompt["output"], prompt["reflection"], prompt["corrected"], ) class ShareGPTPromptTokenizingStrategy(PromptTokenizingStrategy): def tokenize_prompt(self, prompt): result = { "input_ids": [], "attention_mask": [], "labels": [], } current_len = 0 user_token = self._get_user_token() assistant_token = self._get_assistant_token() try: for i, part in enumerate(self.prompter.build_prompt(prompt["conversations"])): if isinstance(part, tuple): if part[0] == "USER:": part = part[0] + part[1] if not user_token else part[1] # this is still the user query, we should res = self._tokenize(part.strip(), add_eos_token=False, strip_bos_token=True) if user_token: res["input_ids"] = [user_token, *res["input_ids"]] # everything from this is masked out from the labels labels = [ IGNORE_TOKEN_ID ] * len(res["input_ids"]) elif part[0] == "ASSISTANT:": # TODO label assistant token/tokens w/ IGNORE_TOKEN_ID part = part[0] + part[1] if not assistant_token else part[1] # this should be the assistent response, should end with an eos token res = self._tokenize(part.strip(), add_eos_token=True, strip_bos_token=True) if assistant_token: res["input_ids"] = [assistant_token, *res["input_ids"]] # not masked out from labels labels = copy.deepcopy(res["input_ids"]) else: logging.warning("unhandled role: " + part[0]) else: # this is only ever the first part, should include the bos token and the user query res = self._tokenize(part.strip(), add_eos_token=False, strip_bos_token=False) # everything from this is masked out from the labels labels = [ IGNORE_TOKEN_ID ] * len(res["input_ids"]) input_ids = res["input_ids"] input_len = len(input_ids) result["input_ids"][current_len : current_len + input_len] = input_ids result["attention_mask"][current_len : current_len + input_len] = [ 1 if x != self.tokenizer.pad_token_id else 0 for x in input_ids ] result["labels"][current_len : current_len + input_len] = labels current_len += input_len return result except (KeyError, AssertionError, IndexError) as e: raise InvalidDataException(str(e)) def _tokenize(self, prompt, add_eos_token=True, strip_bos_token=False): result = self.tokenizer( prompt, truncation=True, max_length=self.sequence_len, padding=False, return_tensors=None, ) if ( result["input_ids"][-1] != self.tokenizer.eos_token_id and len(result["input_ids"]) < self.sequence_len and add_eos_token ): result["input_ids"].append(self.tokenizer.eos_token_id) result["attention_mask"].append(1) if ( result["input_ids"][0] == self.tokenizer.bos_token_id and strip_bos_token ): result["input_ids"] = result["input_ids"][1:] result["attention_mask"] = result["attention_mask"][1:] result["labels"] = result["input_ids"].copy() return result