"""Module containing the Trainer class and related functions""" import importlib import logging import math import os import sys from pathlib import Path from typing import Optional import bitsandbytes as bnb import torch.cuda import transformers from torch import nn from torch.optim.lr_scheduler import OneCycleLR from transformers import EarlyStoppingCallback, Trainer from transformers.trainer_pt_utils import get_parameter_names from axolotl.utils.callbacks import ( SaveBetterTransformerModelCallback, SavePeftModelCallback, ) from axolotl.utils.schedulers import InterpolatingLogScheduler class OneCycleLRSchedulerTrainer(Trainer): """ Trainer subclass that uses the OneCycleLR scheduler """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.lr_scheduler = None def create_scheduler( self, num_training_steps: int, optimizer: Optional[torch.optim.Optimizer] = None, ): optimizer = self.optimizer if optimizer is None else optimizer num_warmup_steps = self.args.get_warmup_steps(num_training_steps) pct_start = num_warmup_steps / num_training_steps self.lr_scheduler = OneCycleLR( optimizer, max_lr=self.args.learning_rate, total_steps=num_training_steps, pct_start=pct_start, div_factor=6, ) return self.lr_scheduler def setup_trainer(cfg, train_dataset, eval_dataset, model, tokenizer): total_num_steps = int( math.ceil(len(train_dataset) * cfg.num_epochs / cfg.batch_size) ) warmup_steps = ( cfg.warmup_steps if cfg.warmup_steps is not None else min(int(0.03 * total_num_steps), 100) ) logging_steps = ( cfg.logging_steps if cfg.logging_steps is not None else max(min(int(0.005 * total_num_steps), 10), 1) ) training_arguments_kwargs = {} if cfg.bf16 == "full": training_arguments_kwargs["bf16_full_eval"] = True else: training_arguments_kwargs["bf16"] = cfg.bf16 training_arguments_kwargs["fp16"] = (cfg.fp16 and not cfg.bf16) or False training_arguments_kwargs["tf32"] = cfg.tf32 training_arguments_kwargs["warmup_steps"] = warmup_steps training_arguments_kwargs["logging_steps"] = logging_steps if cfg.seed: training_arguments_kwargs["seed"] = cfg.seed if cfg.gradient_checkpointing: if cfg.gptq: from alpaca_lora_4bit.gradient_checkpointing import ( apply_gradient_checkpointing, ) gradient_checkpointing_ratio = ( cfg.gradient_checkpointing_ratio if cfg.gradient_checkpointing_ratio else 1.0 ) apply_gradient_checkpointing( model, checkpoint_ratio=gradient_checkpointing_ratio ) else: training_arguments_kwargs[ "gradient_checkpointing" ] = cfg.gradient_checkpointing if cfg.fsdp: training_arguments_kwargs["fsdp"] = cfg.fsdp if cfg.fsdp_config: training_arguments_kwargs["fsdp_config"] = dict(cfg.fsdp_config) # deepspeed if ( os.environ.get("ACCELERATE_USE_DEEPSPEED") == "true" and torch.cuda.device_count() > 1 ): if cfg.deepspeed: training_arguments_kwargs["deepspeed"] = cfg.deepspeed else: # make a guess here # TODO search Path("./") for one training_arguments_kwargs["deepspeed"] = "./ds_config.json" training_args = transformers.TrainingArguments( per_device_train_batch_size=cfg.micro_batch_size, per_device_eval_batch_size=cfg.eval_batch_size if cfg.eval_batch_size is not None else cfg.micro_batch_size, gradient_accumulation_steps=cfg.gradient_accumulation_steps, eval_accumulation_steps=cfg.gradient_accumulation_steps, num_train_epochs=cfg.num_epochs, learning_rate=cfg.learning_rate, evaluation_strategy="steps" if cfg.val_set_size > 0 else "no", save_strategy="steps" if cfg.save_steps else "epoch", eval_steps=cfg.eval_steps if cfg.val_set_size > 0 else None, save_steps=cfg.save_steps, output_dir=cfg.output_dir, save_total_limit=3, load_best_model_at_end=( cfg.load_best_model_at_end is not False and cfg.val_set_size > 0 and cfg.save_steps and cfg.save_steps % cfg.eval_steps == 0 and cfg.load_in_8bit is not True ) or False, ddp_find_unused_parameters=False if cfg.ddp else None, group_by_length=cfg.group_by_length, report_to="wandb" if cfg.use_wandb else None, run_name=cfg.wandb_run_id if cfg.use_wandb else None, optim=cfg.optimizer if cfg.optimizer else "adamw_hf", lr_scheduler_type=cfg.lr_scheduler if cfg.lr_scheduler and cfg.lr_scheduler not in ("one_cycle", "log_sweep") else "cosine", weight_decay=cfg.weight_decay if cfg.weight_decay is not None else 0.0, **training_arguments_kwargs, ) trainer_kwargs = {} if cfg.optimizer == "adamw_anyprecision": if Path(cfg.torchdistx_path).exists(): sys.path.append(cfg.torchdistx_path) importlib.import_module("torchdistx") if ( cfg.optimizer == "adamw_bnb_8bit" and not cfg.gptq and "deepspeed" not in training_arguments_kwargs and not cfg.fsdp ): decay_parameters = get_parameter_names(model, [nn.LayerNorm]) decay_parameters = [name for name in decay_parameters if "bias" not in name] optimizer_grouped_parameters = [ { "params": [ p for n, p in model.named_parameters() if (n in decay_parameters and p.requires_grad) ], "weight_decay": training_args.weight_decay, }, { "params": [ p for n, p in model.named_parameters() if (n not in decay_parameters and p.requires_grad) ], "weight_decay": 0.0, }, ] optimizer = bnb.optim.Adam8bit( optimizer_grouped_parameters, betas=(training_args.adam_beta1, training_args.adam_beta2), eps=training_args.adam_epsilon, lr=training_args.learning_rate, ) if cfg.lr_scheduler == "one_cycle": lr_scheduler_kwargs = ( cfg.lr_scheduler_kwargs if cfg.lr_scheduler_kwargs else {} ) lr_scheduler = OneCycleLR( optimizer, cfg.learning_rate, total_steps=total_num_steps, epochs=cfg.num_epochs, div_factor=cfg.lr_div_factor if cfg.lr_div_factor else 6, **lr_scheduler_kwargs, ) elif cfg.lr_scheduler == "log_sweep": lr_scheduler = InterpolatingLogScheduler( optimizer, cfg.warmup_steps, cfg.log_sweep_min_lr if cfg.log_sweep_min_lr else 1e-10, cfg.log_sweep_max_lr if cfg.log_sweep_max_lr else 10, ) else: lr_scheduler = transformers.get_cosine_schedule_with_warmup( optimizer, training_args.warmup_steps, total_num_steps, ) trainer_kwargs["optimizers"] = (optimizer, lr_scheduler) callbacks = [] # TODO on_save callback to sync checkpoints to GCP/AWS in background if cfg.early_stopping_patience: early_stop_cb = EarlyStoppingCallback( cfg.early_stopping_patience, ) callbacks.append(early_stop_cb) if cfg.local_rank == 0 and cfg.adapter in [ "lora", "qlora", ]: # only save in rank 0 callbacks.append(SavePeftModelCallback) if hasattr(model, "use_bettertransformer") and model.use_bettertransformer is True: callbacks.append(SaveBetterTransformerModelCallback) data_collator_kwargs = { "padding": True, } if cfg.collator_pad_to_longest: data_collator_kwargs["padding"] = "longest" else: data_collator_kwargs["pad_to_multiple_of"] = 8 if cfg.is_llama_derived_model and cfg.landmark_attention: from functools import partial from axolotl.monkeypatch.llama_landmark_attn import MEM_TOKEN, add_mem_tokens mem_id = tokenizer.convert_tokens_to_ids(MEM_TOKEN) model.set_mem_id(mem_id) logging.info("Adding landmark attention tokens to dataset") for dataset in [train_dataset, eval_dataset]: dataset = dataset.map( partial(add_mem_tokens, mem_freq=50, mem_id=mem_id), batched=False, num_proc=32, ) trainer_cls = ( OneCycleLRSchedulerTrainer if cfg.lr_scheduler == "one_cycle" and (cfg.fsdp or cfg.adapter == "qlora") else transformers.Trainer ) trainer = trainer_cls( model=model, train_dataset=train_dataset, eval_dataset=eval_dataset, args=training_args, data_collator=transformers.DataCollatorForSeq2Seq( tokenizer, return_tensors="pt", **data_collator_kwargs, ), callbacks=callbacks, **trainer_kwargs, ) return trainer