fix llama check
Browse files- scripts/finetune.py +12 -4
scripts/finetune.py
CHANGED
@@ -60,12 +60,14 @@ def load_model(base_model, base_model_config, model_type, tokenizer_type, cfg, a
|
|
60 |
# TODO refactor as a kwarg
|
61 |
load_in_8bit = cfg.load_in_8bit
|
62 |
tokenizer = None
|
|
|
63 |
|
64 |
if adapter != "lora":
|
65 |
raise NotImplementedError(f"{adapter} peft adapter not available")
|
66 |
-
if
|
67 |
if cfg.device not in ["mps", "cpu"] and inference is False:
|
68 |
from axolotl.flash_attn import replace_llama_attn_with_flash_attn
|
|
|
69 |
replace_llama_attn_with_flash_attn()
|
70 |
|
71 |
torch_dtype = torch.float16 if cfg.load_in_8bit or cfg.fp16 else torch.float32,
|
@@ -85,7 +87,7 @@ def load_model(base_model, base_model_config, model_type, tokenizer_type, cfg, a
|
|
85 |
raise e
|
86 |
|
87 |
try:
|
88 |
-
if cfg.load_4bit and
|
89 |
from alpaca_lora_4bit.autograd_4bit import load_llama_model_4bit_low_ram
|
90 |
from huggingface_hub import snapshot_download
|
91 |
|
@@ -104,7 +106,7 @@ def load_model(base_model, base_model_config, model_type, tokenizer_type, cfg, a
|
|
104 |
is_v1_model=cfg.gptq_model_v1 if cfg.gptq_model_v1 is not None else True,
|
105 |
)
|
106 |
load_in_8bit = False
|
107 |
-
elif
|
108 |
model = LlamaForCausalLM.from_pretrained(
|
109 |
base_model,
|
110 |
load_in_8bit=cfg.load_in_8bit,
|
@@ -128,13 +130,18 @@ def load_model(base_model, base_model_config, model_type, tokenizer_type, cfg, a
|
|
128 |
|
129 |
if not tokenizer:
|
130 |
try:
|
131 |
-
if
|
132 |
tokenizer = LlamaTokenizer.from_pretrained(model)
|
133 |
else:
|
134 |
tokenizer = getattr(transformers, tokenizer_type).from_pretrained(model)
|
135 |
except:
|
136 |
tokenizer = AutoTokenizer.from_pretrained(base_model)
|
137 |
|
|
|
|
|
|
|
|
|
|
|
138 |
if tokenizer.__class__.__name__ in ["LlamaTokenizer", "LlamaTokenizerFast"]:
|
139 |
tokenizer.pad_token = LLAMA_DEFAULT_PAD_TOKEN
|
140 |
|
@@ -144,6 +151,7 @@ def load_model(base_model, base_model_config, model_type, tokenizer_type, cfg, a
|
|
144 |
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
145 |
|
146 |
if load_in_8bit and not cfg.load_4bit:
|
|
|
147 |
model = prepare_model_for_int8_training(model)
|
148 |
|
149 |
lora_config = LoraConfig(
|
|
|
60 |
# TODO refactor as a kwarg
|
61 |
load_in_8bit = cfg.load_in_8bit
|
62 |
tokenizer = None
|
63 |
+
is_llama_derived_model = "llama" in base_model or "llama" in cfg.model_type.lower()
|
64 |
|
65 |
if adapter != "lora":
|
66 |
raise NotImplementedError(f"{adapter} peft adapter not available")
|
67 |
+
if is_llama_derived_model and cfg.flash_attention:
|
68 |
if cfg.device not in ["mps", "cpu"] and inference is False:
|
69 |
from axolotl.flash_attn import replace_llama_attn_with_flash_attn
|
70 |
+
logging.info("patching with flash attention")
|
71 |
replace_llama_attn_with_flash_attn()
|
72 |
|
73 |
torch_dtype = torch.float16 if cfg.load_in_8bit or cfg.fp16 else torch.float32,
|
|
|
87 |
raise e
|
88 |
|
89 |
try:
|
90 |
+
if cfg.load_4bit and is_llama_derived_model:
|
91 |
from alpaca_lora_4bit.autograd_4bit import load_llama_model_4bit_low_ram
|
92 |
from huggingface_hub import snapshot_download
|
93 |
|
|
|
106 |
is_v1_model=cfg.gptq_model_v1 if cfg.gptq_model_v1 is not None else True,
|
107 |
)
|
108 |
load_in_8bit = False
|
109 |
+
elif is_llama_derived_model:
|
110 |
model = LlamaForCausalLM.from_pretrained(
|
111 |
base_model,
|
112 |
load_in_8bit=cfg.load_in_8bit,
|
|
|
130 |
|
131 |
if not tokenizer:
|
132 |
try:
|
133 |
+
if is_llama_derived_model:
|
134 |
tokenizer = LlamaTokenizer.from_pretrained(model)
|
135 |
else:
|
136 |
tokenizer = getattr(transformers, tokenizer_type).from_pretrained(model)
|
137 |
except:
|
138 |
tokenizer = AutoTokenizer.from_pretrained(base_model)
|
139 |
|
140 |
+
logging.debug(f"EOS: {tokenizer.eos_token_id} / {tokenizer.eos_token}")
|
141 |
+
logging.debug(f"BOS: {tokenizer.bos_token_id} / {tokenizer.bos_token}")
|
142 |
+
logging.debug(f"PAD: {tokenizer.pad_token_id} / {tokenizer.pad_token}")
|
143 |
+
logging.debug(f"UNK: {tokenizer.unk_token_id} / {tokenizer.unk_token}")
|
144 |
+
|
145 |
if tokenizer.__class__.__name__ in ["LlamaTokenizer", "LlamaTokenizerFast"]:
|
146 |
tokenizer.pad_token = LLAMA_DEFAULT_PAD_TOKEN
|
147 |
|
|
|
151 |
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
152 |
|
153 |
if load_in_8bit and not cfg.load_4bit:
|
154 |
+
logging.info("converting model w/ prepare_model_for_int8_training")
|
155 |
model = prepare_model_for_int8_training(model)
|
156 |
|
157 |
lora_config = LoraConfig(
|