more config pruning and migrating
Browse files
configs/llama_7B_alpaca.yml
DELETED
@@ -1,41 +0,0 @@
|
|
1 |
-
base_model: huggyllama/llama-7b
|
2 |
-
model_type: LlamaForCausalLM
|
3 |
-
tokenizer_type: LlamaTokenizer
|
4 |
-
load_in_8bit: true
|
5 |
-
datasets:
|
6 |
-
- path: data/alpaca_data_gpt4.jsonl
|
7 |
-
type: alpaca
|
8 |
-
- path: data/vicuna_cleaned.jsonl
|
9 |
-
type: sharegpt
|
10 |
-
- path: data/gpt4-instruct-similarity-0.6-dataset.jsonl
|
11 |
-
type: gpteacher
|
12 |
-
- path: data/roleplay-similarity_0.6-instruct-dataset.jsonl
|
13 |
-
type: gpteacher
|
14 |
-
dataset_prepared_path: last_run_prepared
|
15 |
-
val_set_size: 0.04
|
16 |
-
adapter: lora
|
17 |
-
lora_model_dir:
|
18 |
-
sequence_len: 2048
|
19 |
-
lora_r: 8
|
20 |
-
lora_alpha: 16
|
21 |
-
lora_dropout: 0.05
|
22 |
-
lora_target_modules:
|
23 |
-
- q_proj
|
24 |
-
- v_proj
|
25 |
-
lora_fan_in_fan_out: false
|
26 |
-
wandb_project: llama-7b-lora
|
27 |
-
wandb_watch:
|
28 |
-
wandb_run_id:
|
29 |
-
wandb_log_model:
|
30 |
-
output_dir: ./lora-llama-alpaca
|
31 |
-
gradient_accumulation_steps: 1
|
32 |
-
micro_batch_size: 16
|
33 |
-
num_epochs: 5
|
34 |
-
learning_rate: 0.00003
|
35 |
-
train_on_inputs: false
|
36 |
-
group_by_length: false
|
37 |
-
bf16: true
|
38 |
-
tf32: true
|
39 |
-
early_stopping_patience:
|
40 |
-
resume_from_checkpoint:
|
41 |
-
local_rank:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
configs/sample.yml
DELETED
@@ -1,87 +0,0 @@
|
|
1 |
-
# this is the huggingface model that contains *.pt, *.safetensors, or *.bin files
|
2 |
-
# this can also be a relative path to a model on disk
|
3 |
-
base_model: decapoda-research/llama-7b-hf-int4
|
4 |
-
# you can specify an ignore pattern if the model repo contains more than 1 model type (*.pt, etc)
|
5 |
-
base_model_ignore_patterns:
|
6 |
-
# if the base_model repo on hf hub doesn't include configuration .json files,
|
7 |
-
# you can set that here, or leave this empty to default to base_model
|
8 |
-
base_model_config: decapoda-research/llama-7b-hf
|
9 |
-
# If you want to specify the type of model to load, AutoModelForCausalLM is a good choice too
|
10 |
-
model_type: AutoModelForCausalLM
|
11 |
-
# Corresponding tokenizer for the model AutoTokenizer is a good choice
|
12 |
-
tokenizer_type: AutoTokenizer
|
13 |
-
# whether you are training a 4-bit quantized model
|
14 |
-
load_4bit: true
|
15 |
-
# this will attempt to quantize the model down to 8 bits and use adam 8 bit optimizer
|
16 |
-
load_in_8bit: true
|
17 |
-
# a list of one or more datasets to finetune the model with
|
18 |
-
datasets:
|
19 |
-
# this can be either a hf dataset, or relative path
|
20 |
-
- path: vicgalle/alpaca-gpt4
|
21 |
-
# The type of prompt to use for training. [alpaca, sharegpt, gpteacher, oasst, reflection]
|
22 |
-
type: alpaca
|
23 |
-
# axolotl attempts to save the dataset as an arrow after packing the data together so
|
24 |
-
# subsequent training attempts load faster, relative path
|
25 |
-
dataset_prepared_path: data/last_run_prepared
|
26 |
-
# How much of the dataset to set aside as evaluation. 1 = 100%, 0.50 = 50%, etc
|
27 |
-
val_set_size: 0.04
|
28 |
-
# if you want to use lora, leave blank to train all parameters in original model
|
29 |
-
adapter: lora
|
30 |
-
# if you already have a lora model trained that you want to load, put that here
|
31 |
-
lora_model_dir:
|
32 |
-
# the maximum length of an input to train with, this should typically be less than 2048
|
33 |
-
# as most models have a token/context limit of 2048
|
34 |
-
sequence_len: 2048
|
35 |
-
# max sequence length to concatenate training samples together up to
|
36 |
-
# inspired by StackLLaMA. see https://huggingface.co/blog/stackllama#supervised-fine-tuning
|
37 |
-
max_packed_sequence_len: 1024
|
38 |
-
# lora hyperparameters
|
39 |
-
lora_r: 8
|
40 |
-
lora_alpha: 16
|
41 |
-
lora_dropout: 0.05
|
42 |
-
lora_target_modules:
|
43 |
-
- q_proj
|
44 |
-
- v_proj
|
45 |
-
# - k_proj
|
46 |
-
# - o_proj
|
47 |
-
lora_fan_in_fan_out: false
|
48 |
-
# wandb configuration if your're using it
|
49 |
-
wandb_project:
|
50 |
-
wandb_watch:
|
51 |
-
wandb_run_id:
|
52 |
-
wandb_log_model:
|
53 |
-
# where to save the finsihed model to
|
54 |
-
output_dir: ./completed-model
|
55 |
-
# training hyperparameters
|
56 |
-
gradient_accumulation_steps: 1
|
57 |
-
batch_size:
|
58 |
-
micro_batch_size: 2
|
59 |
-
num_epochs: 3
|
60 |
-
warmup_steps: 100
|
61 |
-
learning_rate: 0.00003
|
62 |
-
# whether to mask out or include the human's prompt from the training labels
|
63 |
-
train_on_inputs: false
|
64 |
-
# don't use this, leads to wonky training (according to someone on the internet)
|
65 |
-
group_by_length: false
|
66 |
-
# Use CUDA bf16
|
67 |
-
bf16: true
|
68 |
-
# Use CUDA tf32
|
69 |
-
tf32: true
|
70 |
-
# does not work with current implementation of 4-bit LoRA
|
71 |
-
gradient_checkpointing: false
|
72 |
-
# stop training after this many evaluation losses have increased in a row
|
73 |
-
# https://huggingface.co/transformers/v4.2.2/_modules/transformers/trainer_callback.html#EarlyStoppingCallback
|
74 |
-
early_stopping_patience: 3
|
75 |
-
# specify a scheduler to use with the optimizer. only one_cycle is supported currently
|
76 |
-
lr_scheduler:
|
77 |
-
# whether to use xformers attention patch https://github.com/facebookresearch/xformers:
|
78 |
-
xformers_attention:
|
79 |
-
# whether to use flash attention patch https://github.com/HazyResearch/flash-attention:
|
80 |
-
flash_attention:
|
81 |
-
# resume from a specific checkpoint dir
|
82 |
-
resume_from_checkpoint:
|
83 |
-
# if resume_from_checkpoint isn't set and you simply want it to start where it left off
|
84 |
-
# be careful with this being turned on between different models
|
85 |
-
auto_resume_from_checkpoints: false
|
86 |
-
# don't mess with this, it's here for accelerate and torchrun
|
87 |
-
local_rank:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
examples/gptj-qlora/config.yml
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
base_model: EleutherAI/gpt-j-6b
|
2 |
+
base_model_config: EleutherAI/gpt-j-6b
|
3 |
+
load_in_8bit: false
|
4 |
+
load_in_4bit: true
|
5 |
+
strict: false
|
6 |
+
push_dataset_to_hub:
|
7 |
+
datasets:
|
8 |
+
- path: teknium/GPT4-LLM-Cleaned
|
9 |
+
type: alpaca
|
10 |
+
dataset_prepared_path: last_run_prepared
|
11 |
+
val_set_size: 0.01
|
12 |
+
adapter: qlora
|
13 |
+
lora_model_dir:
|
14 |
+
sequence_len: 2048
|
15 |
+
max_packed_sequence_len:
|
16 |
+
lora_r: 8
|
17 |
+
lora_alpha: 32
|
18 |
+
lora_dropout: 0.05
|
19 |
+
lora_target_modules:
|
20 |
+
lora_target_linear: true
|
21 |
+
lora_fan_in_fan_out:
|
22 |
+
wandb_project:
|
23 |
+
wandb_watch:
|
24 |
+
wandb_run_id:
|
25 |
+
wandb_log_model:
|
26 |
+
output_dir: ./qlora-out
|
27 |
+
gradient_accumulation_steps: 2
|
28 |
+
micro_batch_size: 2
|
29 |
+
num_epochs: 2
|
30 |
+
optimizer: paged_adamw_8bit
|
31 |
+
torchdistx_path:
|
32 |
+
lr_scheduler: cosine
|
33 |
+
learning_rate: 0.0001
|
34 |
+
train_on_inputs: false
|
35 |
+
group_by_length: true
|
36 |
+
bf16: true
|
37 |
+
fp16: false
|
38 |
+
tf32: true
|
39 |
+
gradient_checkpointing: true
|
40 |
+
early_stopping_patience:
|
41 |
+
resume_from_checkpoint:
|
42 |
+
local_rank:
|
43 |
+
logging_steps: 1
|
44 |
+
xformers_attention: true
|
45 |
+
flash_attention:
|
46 |
+
gptq_groupsize:
|
47 |
+
gptq_model_v1:
|
48 |
+
warmup_steps: 10
|
49 |
+
eval_steps: 20
|
50 |
+
save_steps:
|
51 |
+
debug:
|
52 |
+
deepspeed:
|
53 |
+
weight_decay: 0.1
|
54 |
+
fsdp:
|
55 |
+
fsdp_config:
|
56 |
+
special_tokens:
|
57 |
+
pad_token: "<|endoftext|>"
|
configs/llama_7B_jeopardy.yml → examples/jeopardy-bot/config.yml
RENAMED
@@ -7,30 +7,28 @@ datasets:
|
|
7 |
- path: openaccess-ai-collective/jeopardy
|
8 |
type: jeopardy
|
9 |
dataset_prepared_path: last_run_prepared
|
10 |
-
val_set_size: 0.
|
11 |
adapter:
|
12 |
lora_model_dir:
|
13 |
-
sequence_len:
|
14 |
-
max_packed_sequence_len:
|
15 |
-
lora_r:
|
16 |
-
lora_alpha:
|
17 |
-
lora_dropout:
|
18 |
lora_target_modules:
|
19 |
-
- q_proj
|
20 |
-
- v_proj
|
21 |
lora_fan_in_fan_out: false
|
22 |
-
wandb_project:
|
23 |
wandb_watch:
|
24 |
wandb_run_id:
|
25 |
wandb_log_model:
|
26 |
output_dir: ./jeopardy-bot-7b
|
27 |
-
gradient_accumulation_steps:
|
28 |
micro_batch_size: 1
|
29 |
-
num_epochs:
|
30 |
optimizer: adamw_bnb_8bit
|
31 |
torchdistx_path:
|
32 |
lr_scheduler: cosine
|
33 |
-
learning_rate: 0.
|
34 |
train_on_inputs: false
|
35 |
group_by_length: false
|
36 |
bf16: true
|
@@ -48,11 +46,10 @@ eval_steps: 110
|
|
48 |
save_steps: 660
|
49 |
debug:
|
50 |
deepspeed:
|
51 |
-
weight_decay: 0.
|
52 |
fsdp:
|
53 |
fsdp_config:
|
54 |
tokens:
|
55 |
-
pad_token: "[PAD]"
|
56 |
bos_token: "<s>"
|
57 |
eos_token: "</s>"
|
58 |
unk_token: "<unk>"
|
|
|
7 |
- path: openaccess-ai-collective/jeopardy
|
8 |
type: jeopardy
|
9 |
dataset_prepared_path: last_run_prepared
|
10 |
+
val_set_size: 0.02
|
11 |
adapter:
|
12 |
lora_model_dir:
|
13 |
+
sequence_len: 512
|
14 |
+
max_packed_sequence_len:
|
15 |
+
lora_r:
|
16 |
+
lora_alpha:
|
17 |
+
lora_dropout:
|
18 |
lora_target_modules:
|
|
|
|
|
19 |
lora_fan_in_fan_out: false
|
20 |
+
wandb_project:
|
21 |
wandb_watch:
|
22 |
wandb_run_id:
|
23 |
wandb_log_model:
|
24 |
output_dir: ./jeopardy-bot-7b
|
25 |
+
gradient_accumulation_steps: 1
|
26 |
micro_batch_size: 1
|
27 |
+
num_epochs: 3
|
28 |
optimizer: adamw_bnb_8bit
|
29 |
torchdistx_path:
|
30 |
lr_scheduler: cosine
|
31 |
+
learning_rate: 0.00003
|
32 |
train_on_inputs: false
|
33 |
group_by_length: false
|
34 |
bf16: true
|
|
|
46 |
save_steps: 660
|
47 |
debug:
|
48 |
deepspeed:
|
49 |
+
weight_decay: 0.1
|
50 |
fsdp:
|
51 |
fsdp_config:
|
52 |
tokens:
|
|
|
53 |
bos_token: "<s>"
|
54 |
eos_token: "</s>"
|
55 |
unk_token: "<unk>"
|