winglian commited on
Commit
c49729d
·
1 Parent(s): 7dc580b

better configuration for quadratic warmup

Browse files
Files changed (1) hide show
  1. src/axolotl/utils/trainer.py +27 -5
src/axolotl/utils/trainer.py CHANGED
@@ -5,6 +5,7 @@ import logging
5
  import math
6
  import os
7
  import sys
 
8
  from pathlib import Path
9
  from typing import Optional
10
 
@@ -13,7 +14,7 @@ import torch.cuda
13
  import transformers
14
  from torch import nn
15
  from torch.optim.lr_scheduler import OneCycleLR
16
- from transformers import EarlyStoppingCallback, Trainer
17
  from transformers.trainer_pt_utils import get_parameter_names
18
 
19
  from axolotl.utils.callbacks import SavePeftModelCallback
@@ -23,11 +24,24 @@ from axolotl.utils.schedulers import (
23
  )
24
 
25
 
 
 
 
 
 
 
 
 
 
 
 
26
  class AxolotlTrainer(Trainer):
27
  """
28
  Extend the base Trainer for axolotl helpers
29
  """
30
 
 
 
31
  def create_scheduler(
32
  self, num_training_steps: int, optimizer: torch.optim.Optimizer = None
33
  ):
@@ -37,11 +51,16 @@ class AxolotlTrainer(Trainer):
37
 
38
  Args:
39
  num_training_steps (int): The number of training steps to do.
 
40
  """
41
 
42
- if self.lr_scheduler is None: # pylint: disable=access-member-before-definition
43
- """# type: ignore"""
44
- if self.args.lr_scheduler_type == "cosine_with_quadratic":
 
 
 
 
45
  self.lr_scheduler = get_cosine_schedule_with_quadratic_warmup( # pylint: disable=attribute-defined-outside-init
46
  optimizer,
47
  num_warmup_steps=self.args.get_warmup_steps(num_training_steps),
@@ -132,6 +151,9 @@ def setup_trainer(cfg, train_dataset, eval_dataset, model, tokenizer):
132
  if cfg.fsdp_config:
133
  training_arguments_kwargs["fsdp_config"] = dict(cfg.fsdp_config)
134
 
 
 
 
135
  # deepspeed
136
  if (
137
  os.environ.get("ACCELERATE_USE_DEEPSPEED") == "true"
@@ -144,7 +166,7 @@ def setup_trainer(cfg, train_dataset, eval_dataset, model, tokenizer):
144
  # TODO search Path("./") for one
145
  training_arguments_kwargs["deepspeed"] = "./ds_config.json"
146
 
147
- training_args = transformers.TrainingArguments(
148
  per_device_train_batch_size=cfg.micro_batch_size,
149
  per_device_eval_batch_size=cfg.eval_batch_size
150
  if cfg.eval_batch_size is not None
 
5
  import math
6
  import os
7
  import sys
8
+ from dataclasses import field
9
  from pathlib import Path
10
  from typing import Optional
11
 
 
14
  import transformers
15
  from torch import nn
16
  from torch.optim.lr_scheduler import OneCycleLR
17
+ from transformers import EarlyStoppingCallback, Trainer, TrainingArguments
18
  from transformers.trainer_pt_utils import get_parameter_names
19
 
20
  from axolotl.utils.callbacks import SavePeftModelCallback
 
24
  )
25
 
26
 
27
+ class AxolotlTrainingArguments(TrainingArguments):
28
+ """
29
+ Extend the base TrainingArguments for axolotl helpers
30
+ """
31
+
32
+ lr_quadratic_warmup: bool = field(
33
+ default=False,
34
+ metadata={"help": "Use quadratic warmup for cosine scheduling."},
35
+ )
36
+
37
+
38
  class AxolotlTrainer(Trainer):
39
  """
40
  Extend the base Trainer for axolotl helpers
41
  """
42
 
43
+ args = None # type: AxolotlTrainingArguments
44
+
45
  def create_scheduler(
46
  self, num_training_steps: int, optimizer: torch.optim.Optimizer = None
47
  ):
 
51
 
52
  Args:
53
  num_training_steps (int): The number of training steps to do.
54
+ optimizer (torch.optim.Optimizer): The training optimizer
55
  """
56
 
57
+ # fmt: off
58
+ if self.lr_scheduler is None: # type: ignore # pylint: disable=access-member-before-definition
59
+ # fmt: on
60
+ if (
61
+ self.args.lr_scheduler_type == "cosine"
62
+ and self.args.lr_quadratic_warmup is True
63
+ ):
64
  self.lr_scheduler = get_cosine_schedule_with_quadratic_warmup( # pylint: disable=attribute-defined-outside-init
65
  optimizer,
66
  num_warmup_steps=self.args.get_warmup_steps(num_training_steps),
 
151
  if cfg.fsdp_config:
152
  training_arguments_kwargs["fsdp_config"] = dict(cfg.fsdp_config)
153
 
154
+ if cfg.lr_quadratic_warmup is not None:
155
+ training_arguments_kwargs["lr_quadratic_warmup"] = cfg.lr_quadratic_warmup
156
+
157
  # deepspeed
158
  if (
159
  os.environ.get("ACCELERATE_USE_DEEPSPEED") == "true"
 
166
  # TODO search Path("./") for one
167
  training_arguments_kwargs["deepspeed"] = "./ds_config.json"
168
 
169
+ training_args = AxolotlTrainingArguments(
170
  per_device_train_batch_size=cfg.micro_batch_size,
171
  per_device_eval_batch_size=cfg.eval_batch_size
172
  if cfg.eval_batch_size is not None