Mistral flash attn packing (#646)
Browse files* add mistral monkeypatch
* add arg for decoder attention masl
* fix lint for duplicate code
* make sure to update transformers too
* tweak install for e2e
* move mistral patch to conditional
.github/workflows/tests.yml
CHANGED
@@ -44,7 +44,7 @@ jobs:
|
|
44 |
|
45 |
- name: Install dependencies
|
46 |
run: |
|
47 |
-
pip3 install -e .
|
48 |
pip3 install -r requirements-tests.txt
|
49 |
|
50 |
- name: Run tests
|
@@ -69,8 +69,7 @@ jobs:
|
|
69 |
|
70 |
- name: Install dependencies
|
71 |
run: |
|
72 |
-
pip3 install -e .
|
73 |
-
pip3 install flash-attn
|
74 |
pip3 install -r requirements-tests.txt
|
75 |
|
76 |
- name: Run e2e tests
|
|
|
44 |
|
45 |
- name: Install dependencies
|
46 |
run: |
|
47 |
+
pip3 install -U -e .
|
48 |
pip3 install -r requirements-tests.txt
|
49 |
|
50 |
- name: Run tests
|
|
|
69 |
|
70 |
- name: Install dependencies
|
71 |
run: |
|
72 |
+
pip3 install -U -e .[flash-attn]
|
|
|
73 |
pip3 install -r requirements-tests.txt
|
74 |
|
75 |
- name: Run e2e tests
|
requirements.txt
CHANGED
@@ -4,7 +4,7 @@ torch==2.0.1
|
|
4 |
auto-gptq
|
5 |
packaging
|
6 |
peft @ git+https://github.com/huggingface/peft.git
|
7 |
-
transformers @ git+https://github.com/huggingface/transformers.git@
|
8 |
bitsandbytes>=0.41.1
|
9 |
accelerate @ git+https://github.com/huggingface/accelerate@80da9cfb09bb3cc9f1b385cb55d6b90d025a5fd9
|
10 |
deepspeed
|
|
|
4 |
auto-gptq
|
5 |
packaging
|
6 |
peft @ git+https://github.com/huggingface/peft.git
|
7 |
+
transformers @ git+https://github.com/huggingface/transformers.git@78dd120
|
8 |
bitsandbytes>=0.41.1
|
9 |
accelerate @ git+https://github.com/huggingface/accelerate@80da9cfb09bb3cc9f1b385cb55d6b90d025a5fd9
|
10 |
deepspeed
|
src/axolotl/monkeypatch/mistral_attn_hijack_flash.py
ADDED
@@ -0,0 +1,401 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Flash attention monkey patch for mistral model"""
|
2 |
+
# pylint: disable=duplicate-code
|
3 |
+
|
4 |
+
import logging
|
5 |
+
import math
|
6 |
+
from typing import List, Optional, Tuple, Union
|
7 |
+
|
8 |
+
import torch
|
9 |
+
import transformers
|
10 |
+
from einops import rearrange
|
11 |
+
from torch import nn
|
12 |
+
from transformers.modeling_outputs import BaseModelOutputWithPast
|
13 |
+
from transformers.models.mistral.modeling_mistral import (
|
14 |
+
MistralDecoderLayer as OriginalMistralDecoderLayer,
|
15 |
+
)
|
16 |
+
from transformers.models.mistral.modeling_mistral import apply_rotary_pos_emb, repeat_kv
|
17 |
+
|
18 |
+
from axolotl.monkeypatch.utils import get_cu_seqlens_from_pos_ids
|
19 |
+
|
20 |
+
try:
|
21 |
+
from flash_attn.flash_attn_interface import ( # pylint: disable=ungrouped-imports
|
22 |
+
flash_attn_varlen_qkvpacked_func,
|
23 |
+
)
|
24 |
+
except ImportError:
|
25 |
+
from flash_attn.flash_attn_interface import (
|
26 |
+
flash_attn_unpadded_qkvpacked_func as flash_attn_varlen_qkvpacked_func,
|
27 |
+
)
|
28 |
+
|
29 |
+
|
30 |
+
LOG = logging.getLogger("axolotl.monkeypatch.mistral")
|
31 |
+
|
32 |
+
|
33 |
+
def replace_mistral_attn_with_flash_attn(
|
34 |
+
packed: Optional[bool] = False,
|
35 |
+
):
|
36 |
+
transformers.models.mistral.modeling_mistral.MistralModel._prepare_decoder_attention_mask = ( # pylint: disable=protected-access
|
37 |
+
_prepare_decoder_attention_mask
|
38 |
+
)
|
39 |
+
transformers.models.mistral.modeling_mistral.MistralAttention.forward = (
|
40 |
+
flashattn_forward
|
41 |
+
)
|
42 |
+
if packed:
|
43 |
+
transformers.models.mistral.modeling_mistral.MistralDecoderLayer = (
|
44 |
+
MistralDecoderLayer
|
45 |
+
)
|
46 |
+
transformers.models.mistral.modeling_mistral.MistralModel.forward = (
|
47 |
+
mistral_model_forward
|
48 |
+
)
|
49 |
+
|
50 |
+
|
51 |
+
# Disable the transformation of the attention mask in LlamaModel as the flash attention
|
52 |
+
# requires the attention mask to be the same as the key_padding_mask
|
53 |
+
def _prepare_decoder_attention_mask(
|
54 |
+
self,
|
55 |
+
attention_mask,
|
56 |
+
input_shape,
|
57 |
+
inputs_embeds,
|
58 |
+
past_key_values_length,
|
59 |
+
sliding_window,
|
60 |
+
): # pylint: disable=unused-argument
|
61 |
+
# [bsz, seq_len]
|
62 |
+
return attention_mask
|
63 |
+
|
64 |
+
|
65 |
+
def flashattn_forward(
|
66 |
+
self,
|
67 |
+
hidden_states: torch.Tensor,
|
68 |
+
attention_mask: Optional[torch.Tensor] = None,
|
69 |
+
position_ids: Optional[torch.LongTensor] = None,
|
70 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
71 |
+
output_attentions: bool = False,
|
72 |
+
use_cache: bool = False,
|
73 |
+
cu_seqlens: Optional[torch.Tensor] = None,
|
74 |
+
max_seqlen: Optional[torch.Tensor] = None,
|
75 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
76 |
+
bsz, q_len, _ = hidden_states.size()
|
77 |
+
|
78 |
+
query_states = self.q_proj(hidden_states)
|
79 |
+
key_states = self.k_proj(hidden_states)
|
80 |
+
value_states = self.v_proj(hidden_states)
|
81 |
+
|
82 |
+
query_states = query_states.view(
|
83 |
+
bsz, q_len, self.num_heads, self.head_dim
|
84 |
+
).transpose(1, 2)
|
85 |
+
key_states = key_states.view(
|
86 |
+
bsz, q_len, self.num_key_value_heads, self.head_dim
|
87 |
+
).transpose(1, 2)
|
88 |
+
value_states = value_states.view(
|
89 |
+
bsz, q_len, self.num_key_value_heads, self.head_dim
|
90 |
+
).transpose(1, 2)
|
91 |
+
|
92 |
+
kv_seq_len = key_states.shape[-2]
|
93 |
+
if past_key_value is not None:
|
94 |
+
kv_seq_len += past_key_value[0].shape[-2]
|
95 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
96 |
+
query_states, key_states = apply_rotary_pos_emb(
|
97 |
+
query_states, key_states, cos, sin, position_ids
|
98 |
+
)
|
99 |
+
|
100 |
+
if past_key_value is not None:
|
101 |
+
# reuse k, v, self_attention
|
102 |
+
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
103 |
+
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
104 |
+
|
105 |
+
past_key_value = (key_states, value_states) if use_cache else None
|
106 |
+
|
107 |
+
# repeat k/v heads if n_kv_heads < n_heads
|
108 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
109 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
110 |
+
|
111 |
+
if cu_seqlens is not None and max_seqlen is not None and cu_seqlens.dim() == 1:
|
112 |
+
# special handling using sample packing
|
113 |
+
qkv = torch.stack(
|
114 |
+
[query_states, key_states, value_states], dim=2
|
115 |
+
) # [bsz, nh, 3, q_len, hd]
|
116 |
+
qkv = qkv.transpose(1, 3) # [bsz, q_len, 3, nh, hd]
|
117 |
+
qkv = rearrange(qkv, "b s ... -> (b s) ...")
|
118 |
+
|
119 |
+
output = flash_attn_varlen_qkvpacked_func(
|
120 |
+
qkv, cu_seqlens, max_seqlen, 0.0, softmax_scale=None, causal=True
|
121 |
+
)
|
122 |
+
output = rearrange(output, "(b s) ... -> b s ...", b=bsz)
|
123 |
+
attn_output = output
|
124 |
+
if attn_output.size() != (bsz, q_len, self.num_heads, self.head_dim):
|
125 |
+
raise ValueError(
|
126 |
+
f"`attn_output` should be of size {(bsz, q_len, self.num_heads, self.head_dim)}, but is"
|
127 |
+
f" {attn_output.size()}"
|
128 |
+
)
|
129 |
+
attn_output = rearrange(attn_output, "b s h d -> b s (h d)")
|
130 |
+
attn_weights = None
|
131 |
+
else:
|
132 |
+
attn_weights = torch.matmul(
|
133 |
+
query_states, key_states.transpose(2, 3)
|
134 |
+
) / math.sqrt(self.head_dim)
|
135 |
+
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
136 |
+
raise ValueError(
|
137 |
+
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
|
138 |
+
f" {attn_weights.size()}"
|
139 |
+
)
|
140 |
+
|
141 |
+
if attention_mask is not None:
|
142 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
143 |
+
raise ValueError(
|
144 |
+
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
145 |
+
)
|
146 |
+
|
147 |
+
attn_weights = attn_weights + attention_mask
|
148 |
+
|
149 |
+
# upcast attention to fp32
|
150 |
+
attn_weights = nn.functional.softmax(
|
151 |
+
attn_weights, dim=-1, dtype=torch.float32
|
152 |
+
).to(query_states.dtype)
|
153 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
154 |
+
|
155 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
156 |
+
raise ValueError(
|
157 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
158 |
+
f" {attn_output.size()}"
|
159 |
+
)
|
160 |
+
|
161 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
162 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
163 |
+
|
164 |
+
attn_output = self.o_proj(attn_output)
|
165 |
+
|
166 |
+
if not output_attentions:
|
167 |
+
attn_weights = None
|
168 |
+
|
169 |
+
return attn_output, attn_weights, past_key_value
|
170 |
+
|
171 |
+
|
172 |
+
def mistral_model_forward(
|
173 |
+
self,
|
174 |
+
input_ids: torch.LongTensor = None,
|
175 |
+
attention_mask: Optional[torch.Tensor] = None,
|
176 |
+
position_ids: Optional[torch.LongTensor] = None,
|
177 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
178 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
179 |
+
use_cache: Optional[bool] = None,
|
180 |
+
output_attentions: Optional[bool] = None,
|
181 |
+
output_hidden_states: Optional[bool] = None,
|
182 |
+
return_dict: Optional[bool] = None,
|
183 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
184 |
+
output_attentions = (
|
185 |
+
output_attentions
|
186 |
+
if output_attentions is not None
|
187 |
+
else self.config.output_attentions
|
188 |
+
)
|
189 |
+
output_hidden_states = (
|
190 |
+
output_hidden_states
|
191 |
+
if output_hidden_states is not None
|
192 |
+
else self.config.output_hidden_states
|
193 |
+
)
|
194 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
195 |
+
|
196 |
+
return_dict = (
|
197 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
198 |
+
)
|
199 |
+
|
200 |
+
# retrieve input_ids and inputs_embeds
|
201 |
+
if input_ids is not None and inputs_embeds is not None:
|
202 |
+
raise ValueError(
|
203 |
+
"You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time"
|
204 |
+
)
|
205 |
+
if input_ids is not None:
|
206 |
+
batch_size, seq_length = input_ids.shape
|
207 |
+
elif inputs_embeds is not None:
|
208 |
+
batch_size, seq_length, _ = inputs_embeds.shape
|
209 |
+
else:
|
210 |
+
raise ValueError(
|
211 |
+
"You have to specify either decoder_input_ids or decoder_inputs_embeds"
|
212 |
+
)
|
213 |
+
|
214 |
+
seq_length_with_past = seq_length
|
215 |
+
past_key_values_length = 0
|
216 |
+
|
217 |
+
if past_key_values is not None:
|
218 |
+
past_key_values_length = past_key_values[0][0].shape[2]
|
219 |
+
seq_length_with_past = seq_length_with_past + past_key_values_length
|
220 |
+
|
221 |
+
cu_seqlens = None
|
222 |
+
max_seqlen = None
|
223 |
+
if position_ids is None:
|
224 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
225 |
+
position_ids = torch.arange(
|
226 |
+
past_key_values_length,
|
227 |
+
seq_length + past_key_values_length,
|
228 |
+
dtype=torch.long,
|
229 |
+
device=device,
|
230 |
+
)
|
231 |
+
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
|
232 |
+
else:
|
233 |
+
position_ids = position_ids.view(-1, seq_length).long()
|
234 |
+
cu_seqlens, max_seqlen = get_cu_seqlens_from_pos_ids(position_ids)
|
235 |
+
cu_seqlens = cu_seqlens.squeeze()
|
236 |
+
|
237 |
+
if inputs_embeds is None:
|
238 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
239 |
+
# embed positions
|
240 |
+
if attention_mask is None:
|
241 |
+
attention_mask = torch.ones(
|
242 |
+
(batch_size, seq_length_with_past),
|
243 |
+
dtype=torch.bool,
|
244 |
+
device=inputs_embeds.device,
|
245 |
+
)
|
246 |
+
attention_mask = (
|
247 |
+
self._prepare_decoder_attention_mask( # pylint: disable=protected-access
|
248 |
+
attention_mask,
|
249 |
+
(batch_size, seq_length),
|
250 |
+
inputs_embeds,
|
251 |
+
past_key_values_length,
|
252 |
+
sliding_window=self.config.sliding_window,
|
253 |
+
)
|
254 |
+
)
|
255 |
+
|
256 |
+
hidden_states = inputs_embeds
|
257 |
+
|
258 |
+
if self.gradient_checkpointing and self.training:
|
259 |
+
if use_cache:
|
260 |
+
transformers.logger.warning_once(
|
261 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
262 |
+
)
|
263 |
+
use_cache = False
|
264 |
+
|
265 |
+
# decoder layers
|
266 |
+
all_hidden_states = () if output_hidden_states else None
|
267 |
+
all_self_attns = () if output_attentions else None
|
268 |
+
next_decoder_cache = () if use_cache else None
|
269 |
+
|
270 |
+
for idx, decoder_layer in enumerate(self.layers):
|
271 |
+
if output_hidden_states:
|
272 |
+
all_hidden_states += (hidden_states,)
|
273 |
+
|
274 |
+
past_key_value = past_key_values[idx] if past_key_values is not None else None
|
275 |
+
|
276 |
+
if self.gradient_checkpointing and self.training:
|
277 |
+
|
278 |
+
def create_custom_forward(module):
|
279 |
+
def custom_forward(*inputs):
|
280 |
+
# None for past_key_value
|
281 |
+
return module(*inputs)
|
282 |
+
|
283 |
+
return custom_forward
|
284 |
+
|
285 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
286 |
+
create_custom_forward(decoder_layer),
|
287 |
+
hidden_states,
|
288 |
+
attention_mask,
|
289 |
+
position_ids,
|
290 |
+
past_key_value,
|
291 |
+
output_attentions,
|
292 |
+
None,
|
293 |
+
cu_seqlens,
|
294 |
+
max_seqlen,
|
295 |
+
)
|
296 |
+
else:
|
297 |
+
layer_outputs = decoder_layer(
|
298 |
+
hidden_states,
|
299 |
+
attention_mask=attention_mask,
|
300 |
+
position_ids=position_ids,
|
301 |
+
past_key_value=past_key_value,
|
302 |
+
output_attentions=output_attentions,
|
303 |
+
use_cache=use_cache,
|
304 |
+
cu_seqlens=cu_seqlens,
|
305 |
+
max_seqlen=max_seqlen,
|
306 |
+
)
|
307 |
+
|
308 |
+
hidden_states = layer_outputs[0]
|
309 |
+
|
310 |
+
if use_cache:
|
311 |
+
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
|
312 |
+
|
313 |
+
if output_attentions:
|
314 |
+
all_self_attns += (layer_outputs[1],)
|
315 |
+
|
316 |
+
hidden_states = self.norm(hidden_states)
|
317 |
+
|
318 |
+
# add hidden states from the last decoder layer
|
319 |
+
if output_hidden_states:
|
320 |
+
all_hidden_states += (hidden_states,)
|
321 |
+
|
322 |
+
next_cache = next_decoder_cache if use_cache else None
|
323 |
+
if not return_dict:
|
324 |
+
return tuple(
|
325 |
+
v
|
326 |
+
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
|
327 |
+
if v is not None
|
328 |
+
)
|
329 |
+
return BaseModelOutputWithPast(
|
330 |
+
last_hidden_state=hidden_states,
|
331 |
+
past_key_values=next_cache,
|
332 |
+
hidden_states=all_hidden_states,
|
333 |
+
attentions=all_self_attns,
|
334 |
+
)
|
335 |
+
|
336 |
+
|
337 |
+
class MistralDecoderLayer(OriginalMistralDecoderLayer):
|
338 |
+
"""
|
339 |
+
patched version of MistralDecoderLayer to pass through the precalculated cu_seqlens
|
340 |
+
"""
|
341 |
+
|
342 |
+
def forward(
|
343 |
+
self,
|
344 |
+
hidden_states: torch.Tensor,
|
345 |
+
attention_mask: Optional[torch.Tensor] = None,
|
346 |
+
position_ids: Optional[torch.LongTensor] = None,
|
347 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
348 |
+
output_attentions: Optional[bool] = False,
|
349 |
+
use_cache: Optional[bool] = False,
|
350 |
+
cu_seqlens: Optional[torch.Tensor] = None,
|
351 |
+
max_seqlen: Optional[torch.Tensor] = None,
|
352 |
+
) -> Tuple[
|
353 |
+
torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]
|
354 |
+
]:
|
355 |
+
"""
|
356 |
+
Args:
|
357 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
358 |
+
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
|
359 |
+
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
360 |
+
output_attentions (`bool`, *optional*):
|
361 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
362 |
+
returned tensors for more detail.
|
363 |
+
use_cache (`bool`, *optional*):
|
364 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
365 |
+
(see `past_key_values`).
|
366 |
+
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
367 |
+
cu_seqlens (`torch.Tensor`, *optional*) cumulative sequence len when packing
|
368 |
+
"""
|
369 |
+
|
370 |
+
residual = hidden_states
|
371 |
+
|
372 |
+
hidden_states = self.input_layernorm(hidden_states)
|
373 |
+
|
374 |
+
# Self Attention
|
375 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
376 |
+
hidden_states=hidden_states,
|
377 |
+
attention_mask=attention_mask,
|
378 |
+
position_ids=position_ids,
|
379 |
+
past_key_value=past_key_value,
|
380 |
+
output_attentions=output_attentions,
|
381 |
+
use_cache=use_cache,
|
382 |
+
cu_seqlens=cu_seqlens,
|
383 |
+
max_seqlen=max_seqlen,
|
384 |
+
)
|
385 |
+
hidden_states = residual + hidden_states
|
386 |
+
|
387 |
+
# Fully Connected
|
388 |
+
residual = hidden_states
|
389 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
390 |
+
hidden_states = self.mlp(hidden_states)
|
391 |
+
hidden_states = residual + hidden_states
|
392 |
+
|
393 |
+
outputs = (hidden_states,)
|
394 |
+
|
395 |
+
if output_attentions:
|
396 |
+
outputs += (self_attn_weights,)
|
397 |
+
|
398 |
+
if use_cache:
|
399 |
+
outputs += (present_key_value,)
|
400 |
+
|
401 |
+
return outputs
|
src/axolotl/utils/models.py
CHANGED
@@ -150,6 +150,14 @@ def load_model(
|
|
150 |
# Note: This might overwrite previous additional_special_tokens
|
151 |
tokenizer.add_special_tokens({"additional_special_tokens": [MEM_TOKEN]})
|
152 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
153 |
if cfg.is_llama_derived_model and cfg.xpos_rope:
|
154 |
from axolotl.monkeypatch.xpos_rope_llama_monkey_patch import (
|
155 |
replace_llama_rope_with_xpos_rope,
|
|
|
150 |
# Note: This might overwrite previous additional_special_tokens
|
151 |
tokenizer.add_special_tokens({"additional_special_tokens": [MEM_TOKEN]})
|
152 |
|
153 |
+
if cfg.is_mistral_derived_model and cfg.flash_attention:
|
154 |
+
from axolotl.monkeypatch.mistral_attn_hijack_flash import (
|
155 |
+
replace_mistral_attn_with_flash_attn,
|
156 |
+
)
|
157 |
+
|
158 |
+
LOG.info("patching with flash attention")
|
159 |
+
replace_mistral_attn_with_flash_attn(packed=cfg.sample_packing)
|
160 |
+
|
161 |
if cfg.is_llama_derived_model and cfg.xpos_rope:
|
162 |
from axolotl.monkeypatch.xpos_rope_llama_monkey_patch import (
|
163 |
replace_llama_rope_with_xpos_rope,
|