Angainor commited on
Commit
b565ecf
·
1 Parent(s): a808bf9

Fix strict and Lint

Browse files
scripts/finetune.py CHANGED
@@ -158,7 +158,7 @@ def train(
158
  cfg_keys = cfg.keys()
159
  for k, _ in kwargs.items():
160
  # if not strict, allow writing to cfg even if it's not in the yml already
161
- if k in cfg_keys or cfg.strict is False:
162
  # handle booleans
163
  if isinstance(cfg[k], bool):
164
  cfg[k] = bool(kwargs[k])
@@ -198,9 +198,9 @@ def train(
198
  logging.info(f"loading tokenizer... {tokenizer_config}")
199
  tokenizer = load_tokenizer(tokenizer_config, cfg.tokenizer_type, cfg)
200
 
201
- if check_not_in(
202
- ["shard", "merge_lora"], kwargs
203
- ) and not cfg.inference: # don't need to load dataset for these
204
  train_dataset, eval_dataset = load_prepare_datasets(
205
  tokenizer, cfg, DEFAULT_DATASET_PREPARED_PATH
206
  )
@@ -226,7 +226,7 @@ def train(
226
  cfg.model_type,
227
  tokenizer,
228
  cfg,
229
- adapter=cfg.adapter
230
  )
231
 
232
  if "merge_lora" in kwargs and cfg.adapter is not None:
 
158
  cfg_keys = cfg.keys()
159
  for k, _ in kwargs.items():
160
  # if not strict, allow writing to cfg even if it's not in the yml already
161
+ if k in cfg_keys or not cfg.strict:
162
  # handle booleans
163
  if isinstance(cfg[k], bool):
164
  cfg[k] = bool(kwargs[k])
 
198
  logging.info(f"loading tokenizer... {tokenizer_config}")
199
  tokenizer = load_tokenizer(tokenizer_config, cfg.tokenizer_type, cfg)
200
 
201
+ if (
202
+ check_not_in(["shard", "merge_lora"], kwargs) and not cfg.inference
203
+ ): # don't need to load dataset for these
204
  train_dataset, eval_dataset = load_prepare_datasets(
205
  tokenizer, cfg, DEFAULT_DATASET_PREPARED_PATH
206
  )
 
226
  cfg.model_type,
227
  tokenizer,
228
  cfg,
229
+ adapter=cfg.adapter,
230
  )
231
 
232
  if "merge_lora" in kwargs and cfg.adapter is not None:
src/axolotl/utils/models.py CHANGED
@@ -77,14 +77,9 @@ def load_tokenizer(
77
 
78
 
79
  def load_model(
80
- base_model,
81
- base_model_config,
82
- model_type,
83
- tokenizer,
84
- cfg,
85
- adapter="lora"
86
  ):
87
- # type: (str, str, str, AutoTokenizer, DictDefault, Optional[str], bool) -> Tuple[PreTrainedModel, Optional[PeftConfig]]
88
  """
89
  Load a model from a base model and a model type.
90
  """
 
77
 
78
 
79
  def load_model(
80
+ base_model, base_model_config, model_type, tokenizer, cfg, adapter="lora"
 
 
 
 
 
81
  ):
82
+ # type: (str, str, str, AutoTokenizer, DictDefault, Optional[str]) -> Tuple[PreTrainedModel, Optional[PeftConfig]]
83
  """
84
  Load a model from a base model and a model type.
85
  """